
Technical Report
CMU/SEI-92-TR-1 1
ESD-TR-92-11

. Carnegie-Mellon University

- Software Engineering Institute

Software Measurement Concepts
AD-A254 177 for Acquisition Program Managers

Developed by the
Software Acquisition Metrics Working Group

Prepared by

James A. Rozum

June 1992

DTIC* * J~l~LECTE D

IoD,!lac releas az.d s, -
dthlbutkoa Is Ualwmt.&

92 8 t 6 0 31 * 92-23731

The followirng statement of assurance is more than a statement required to comply with the tederat law. This is a sincere staternfeti li A.i'- 1 Zj.;!.,irV that all
people are included in the diversity which makes Carnegie Mellon an exciting place Carnegie Mellon wiihes to includ pe vlPiIt r:i' coic oovationa
origin, sex, handicap, religion, creed, ancestry belief, age, veteran status or sexual orientation

Carnegie Mellon Uriversity does not discriminate and Carnege Mellon University is reqluired not to discriminate in admissioni, ii i''',E r iho Lof race
color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of the Edticetional Amendmeni- i:l , S0t cit the
Rehabilitation Act of 1973 or other federal, state, or lcat laws or executive orders. In addition, Carnegie Mellon does not discr, i nje i, ftlq' ant!ii employment on
the bat;s of religion. creed, ancestry, belief, age, veteran ctatus or sexual orientation in violation of arny federal, state, or local lah ; c, - wcut ci PrC' liniries concern-
ing apoication oft this policy should be direcred to the Provost. Carnegie Mellon University 5000 Forbes Avenue. Pillshurrti. P 1'2 (4121 :13f8 6684 or the
Vice Pres dent for Errlment. Carnegie Mellon University. 5d000 Forbes Avenue, Pittsburgh, PA 15213. telephone. (412) 26tt '0".

Technical Report
CMU/SEI-92-TR-1 1

ES D-TR-9 2-1 1
June 1992

Software Measurement Concepts for
Acquisition Program Managers

Developed by the

Software Acquisition Metrics Working Group

Prepared by

James A. Rozum
Software Process Measurement Project

Accesion For

NTIS CRA&l

DT IC 1AU;

By.

Approved for public release.
Distribution unlimited.

D~~-LiE 3tA~T

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The Ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

John S. Herman, Capt, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.
Copyright 0 1992 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scentific and lechnical information for DoD personnel, DoD contractors and potential contractors, and other U.S Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Att: FDRA, Cameron Station, Alexandria, VA 22304-6145.
Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service. U.S. Department of Commerce, Springfield, VA 22161.

Copies of this document are also available from Research Access, Inc.. 3400 Forbes Avenue. Suite 302, Pittsburgh, PA 15213.

Use of any trademarlts in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

List of Figures ii

Acknowledgements iii

1. Executive Summary 1
1.1 Why Should Acquisition Program Managers Use Software Measurement? 1
1.2 Organization of This Report 3
1.3 Purpose and Audience 3
1.4 Scope 3
1.5 Software Measurement Process Concepts 4
1.6 Common Program Issues 6
1.7 Constraints and Limitations 9

2. Data Definition and Collection 13
2.1 Deciding Which Measures Are Required 13
2.2 Collecting the Measurement Data 15
2.3 Understanding the Data 17
2.4 Using the Data 19

3. Software Measures for Common Software Development Issues 21
3.1 Software Size 21
3.2 Effort 26
3.3 Staff 31
3.4 Milestone Performance 33
3.5 Development Progress 38
3.6 Software Defects 43
3.7 Computer Resource Utilization 50

4. Other Sample Analysis Techniques 55
4.1 Trend Analysis 55
4.2 Multiple Metric Relationship Analysis 58
4.3 Modeling Input Data Analysis 60
4.4 Thresholds and Waming Umits 62

References 65

Acronyms 67

CMU/SEI-92-TR-11 I

List of Figures

Figure 1-1 Cross Reference of Metrics to the Issues They Support 9
Figure 2-1 Example Illustrating the Need for Understanding Data 18
Figure 2-2 Example Showing How to Track Multiple Plans 20

Figure 3-1 Sample Software Size Measure - CSU 23
Figure 3-2 Sample Software Size Measure - CSU Per Build 24

Figure 3-3 Example Showing the Postponement of Code Development From 25
Plan 2 to Plan 7

Figure 3-4 Sample Total Staff Effort Expended Measure 28
Figure 3-5 Sample Monthly Staff Effort Measure 29
Figure 3-6 Sample Staff Measure 32
Figure 3-7 Sample Milestone Performance Measure 35
Figure 3-8 Example Table Illustrating Milestone Performance Stability 36
Figure 3-9 Example Measure Illustrating Milestone Performance Stability 37
Figure 3-10 Sample Development Progress Measure 40
Figure 3-11 Example Showing CSUs That Have Completed Key Process Steps 41
Figure 3-12 Sample Software Defects Measure 45
Figure 3-13 Example Illustrating the Need for Understanding Software 46

Defects Discovered
Figure 3-14 Sample Defect Density Measure 47

Figure 3-15 Example Table Showing Longevity of Defects 48
Figure 3-16 Example of Pareto Analysis Showing Defects Per CSC Example 49
Figure 3-17 Sample Computer Resource Utilization Measure 52
Figure 4-1 Example of Single Parameter Trend Analysis 56
Figure 4-2 Example of Multiple Parameter Trend Analysis 57
Figure 4-3 Example of Multi-Metric Relationship Analysis 59
Figure 4-4 Example of Modeling Input Data Analysis Using COCOMO 61
Figure 4-5 Example of Modeling Input Data Analysis Results of Govemment 61

Versus Contractor Estimates

Figure 4-6 Example of Statistical Analysis Using Productivity 63

CMU/SEI-92-TR-1 1

Acknowledgements

The SEI measurement efforts have depended on the participation of many people. The
Software Process Measurement Project thanks the members of the Software Acquisition
Metrics Working Group who contributed to the content and structure of this document. The
SEI is indebted to them and to the organizations who sponsored their participation in this
effort to incorporate measurement into the practices of acquisition program managers.
Without their participation, the SEI could not have completed this task. The members of the
Software Acquisition Metrics Working Group are:

A. Frank Ackerman Jim Keng
Institute for Zero Defect Software McDonnell Douglas Corporation

Mark Amaya Jeffrey Lasky
McDonnell Douglas Corporation Rochester Institute of Technology

Miguel Carrio Janet MacLaughlin
Teledyne Brown Engineering US Naval Ocean Systems Center

Andrew Chruscicki John J. McGarry
USAF Rome Laboratory US Naval Underwater Systems Center

Charles Cox Alfred H. Peschel
US Naval Weapons Center TRW, Systems Development Division

Joseph P. Dean Sam T. Redwine, Jr.
Tecolote Research, Inc. Software Productivity Consortium

Peter Dyson Alan J. Roberts
Software Productivity Solutions Defense Systems Management College

Stewart Fenick James A. Rozum
US Army Communication and Electronics Software Engineering Institute
Command

Ronald Gulezian Herman P. Schultz
Drexel University MITRE Corporation

Capt. Marc L. Hoffman Raghu P. Singh
USAF - Air Force Systems Command US Navy Space and Warfare Command

Steve Keller William Spaulding
Dynamics Research, Inc. Dynamics Research, Inc.

CMUISEI-92-TR-11

The SEI Software Process Measurement Project thanks all the individuals who reviewed the
October 1991 draft and took the time and care to provide written comments. Those
comments were very important in transforming the draft into this technical report. People
who provided comments are:

Emanuel Baker Donna Lindskog
Software Engineering Consultants, Inc. University of Regina and SaskTel

Lyle Cocking John Marciniak
General Dynamics National Security Industries Association

Barry Corson Richard Murphy
US Naval Air System Command Software Engineering Institute

Dean Dubofsky Jacquelyn Nixon
MITRE Corporation US Marine Corps (MCTSSA)

Stewart Fenick Don O'Neill
US Army Communication and Electronics O'Neill Consultants
Command

Paul Funch Anne Quinn
MITRE Corporation DCMDM-EE

John Harding Donald Reifer
Groupe Bull Reifer Consultants, Inc.

Donna Hinrichs Norman Schneidewind
US.Air Force Naval Post Graduate School

Theresa Huber Mark Servello
DSD Laboratories, Inc. American Management Systems, Inc.

Charles Koch Terry Wilcox
US Naval Air Development Center Defense Plant Representative Office - General

Dynamics

Harry Larson
Larbridge Enterprises

Iv SCMU/SEI-92-TR-1 1

The project also thanks the members of the Measurement Steering Committee for their many
thoughtful contributions. Their insight and advice have been invaluable. This committee
consists of the following representatives from industry, government, and academia who have
earned solid national and international reputations for their contributions to measurement and
software management:

William Agresti Richard Mitchell
MITRE Corporation US Naval Air Development Center

Henry Block John Musa
University of Pittsburgh AT&T Bell Laboratories

David Card Alfred H. Peschel
Computer Sciences Corporation TRW, Systems Development Division

Andrew Chruscicki Marshall Potter
USAF Rome Laboratory Department of the Navy

Samuel Conte Samuel T. Redwine, Jr.
Purdue University Software Productivity Consortium

Bill Curtis Kyle Rone
Software Engineering Institute IBM Corporation

Joseph P. Dean Seward (Ed) Smith
Tecolote Research IBM Corporation

Stewart Fenick Norman Schneidewind
US Army Communication and Electronics Naval Post Graduate School
Command

John Harding Herman P. Schultz
Groupe Bull MITRE Corporation

Frank McGarry Robert Sulgrove
NASA Goddard Space Flight Center NCR Corporation

John J. McGarry Ray Wolverton
US Naval Underwater Systems Center Hughes Aircraft

Watts Humphrey
Software Engineering Institute

CMU/SEI-92-TR-XX v

As the members of the Software Acquisition Metrics Working Group prepared this report,
they were aided in their activities by the able and professional support staff of the SEI.
Special thanks are owed to Mary Beth Chrissis and Suzanne Couturiaux, who were
instrumental in getting the report into final form; to Marcia Theoret and Lori Race of the
Software Process Measurement Project, who coordinated many of our meeting activities and
provided outstanding secretarial services; and to Helen Joyce and her assistants from Event
Management, who so competently assured that meeting rooms, lodgings, and refreshments
were there when we needed them.

vi CMU/SEI-92-TR-1 1

Software Measurement Concepts for Acquisition
Program Managers

Abstract. For program managers to effectively manage and control software
development, they need to incorporate a measurement process into their decision
making and reporting process. Measurement costs money, but it can also save
money through early problem detection and objective clarification of critical
software development issues. This report provides some basic concepts that
program managers can use to help integrate measurement into the process for
managing software development. It also provides an initial set of measures to
help address common issues in software intensive acquisitions.

When the Software Acquisition Metrics Working Group first met in 1989, only a
few reports existed on the subject of how program managers could use software
measurement; now, other reports have been written. The goal of this report is not
to compete with those reports, but to use them as starting points for expansion.
This report should be viewed not as a etandard but as containing guidelines and
advice for program officers and managers starting to use software measurement
in their own organizations.

1. Executive Summary

1.1 Why Should Acquisition Program Managers Use Software
Measurement?

Software contracts are difficult to manage. There are many complex inter-relationships
between the factors, assumptions, estimates, and unknowns during the planning and
execution of software contracts. Contributing equally to the difficulty of managing the
contracts are ever changing constraints, technology, and acquisition environments. These all
contribute to the difficulty of making good, timely decisions that guide a program toward
successful completion. With software measurement, program managers have information
that leads to early insight of potential problems as well as information that can support
decisions. Without software measurement, program managers do not have the insight to
identify and resolve problems, and as a result, they make decisions to react to events and
problems rather than to c,,tail those problems before they surface.

Managers use measurement as feedback to control their projects. Without measurement,
there is usually no way to know the status of a project along its many dimensions: cost,
schedule, product performance, supportability, quality, etc. Thus, it is difficult to know what
actions to take, what decisions to make, or how to correct unexpected outcomes. To benefit

CMU/SEI-92-TR-1 1 1

from measurement, managers need to link software measurement to the goals and risks of
the program [WALTON].

"...You cannot just use numbers to control things. The numbers must properly
represent the process being controlled, and they must be sufficiently well defined
and verified to provide a reliable basis for action. While process measurements
are essential for orderly improvement, careful planning and preparation are
required or the results are likely to be disappointing." [HUMPHREY]

The successful application of software measurement depends on having well-established
measurement goals. A software measurement process that identifies the issues and uses
them to identify what data and measurements to collect will provide better insight into the key
program issues and help program managers make informed decisions. No single
measurement will meet a program manager's needs [BROOKS87]. Therefore, the program
manager needs a framework for defining what data to collect and how to analyze the data
after it is collected.

"The data collection process must be driven by the information from questions that
we formulate based on our needs. In short, know what question is to be
answered before collecting data." [JURAN]

A myth exists that program managers can just collect data and plot graphs to form an
effective measurement process. Although possibly true in a static, precedented software
development environment, this is not the case for the majority of U.S. Department of Defense
(DoD) software acquisitions. The measurement process must be dynamic because of the
constantly changing issues and complexities in DoD contracting. To De effective for the
program manager, the measurement process must be a complete Plan-Do-Check-Act
(PDCA) process that is integrated into the program office structure and used as a
constructive tool for communicating between the program office and the contractor
[SHEWART]. The PDCA cycle that the program manager uses is described as follows:

Plan: Identify the issues or questions the program manager has and then
determine the data and measures to be collected to address them.

Do: Collect data and, based on the issues identified and using baseline data,
derive graphical representations (i.e., indicators) to better illustrate the data
trends.

Check: Analyze the trends, graphs, data, etc. to better understand the issues and the
performance towards their resolutions.

Act: Report the results, recommend improvements, and identify new issues and
questions.

2 CMU/SEI-92-TR-1 1

1.2 Organization of This Report

In general, the concepts and measures defined in this report are designed to benefit the
program manager by providing insight into, and hence control over, a software contract's
resources, progress, and technical issues. To effectively use the concepts and measures,
the program manager will require personnel skilled in software engineering and development
and in the acquisition process and environment.

The data definition and collection concepts provided in Chapter 2 of this report let program
managers define their own goals, identify what they believe to be the issues and risks, and
define what questions they want the measurement to help answer. The set of commonly
used software measures provided in Chapter 3 helps acquisition program managers address
issues that are common to most software contracts. An overview of measurement analysis
techniques provided in Chapter 4 helps program managers better analyze the data they have
collected.

1.3 Purpose and Audience

The primary objective in publishing this report is to accelerate the use of software
measurement in the acquisition process by providing:

1) Measurement process concepts that support the implementation of software
measurement in DoD programs.

2) A set of metrics that are useful in addressing common software development issues.

This report is written for DoD program managers who are responsible for managing and
making decisions regarding a software contract. It is expected that the program manager is
knowledgeable about and regularly uses DOD-STD-2167A [DOD2167A]. However, this
report can be adapted and used by other government agencies or persons who have similar
contract monitoring and oversight duties. In addition, contractors can use the process and
measures described in this report to support their own management and development
processes.

1.4 Scope

This report provides the basic concepts needed to start a software measurement process.
The process can then be tailored and further elaborated to support a specific contract or
program office. Follow-on efforts may include a detailed software measurement process for
acquisition program offices including guidance on how to contractually implement software
measurement.

The software measures described in this report are intended for use during the engineering
and manufacturing phase of the system acquisition life cycle [DOD5000.1]; however, this

CMU/SEI-92-TR-1 1 3

does not preclude adapting them for use in earlier phases such as demonstration and
validation or during later phases such as operational support. It also does not preclude
adapting the measures for measuring how the process responds when applying process
improvements or new technologies within a domain, e.g., reuse, object oriented design, etc.;
nor does it preclude using the measures to guide and manage programs determined to
already be in trouble.

1.5 Software Measurement Process Concepts

A software measurement process !s a systematic method of measuring, assessing, and
adjusting the software development process using objective data. Within such a systematic
software measurement process, software data is collected based on a known or anticipated
development issue, concern, or question. The data is analyzed with respect to the
characteristics of the software development process and products, and used to assess
progress, quality, and performance throughout the development. There are four key
components to an effective measurement process:

* Defining clearly the software development issues and the software measures (data
elements) that support insight to the issues.

* Processing the software data into graphs and tabular reports (indicators) that support
issue analysis.

* Analyzing the indicators to provide insight into the issues.

* Using the results to implement improvements and identify new issues and questions.

Each of these components is driven by the issues and characteristics inherent to the
program. For example, the decision of what specific data to collect is based on the list of
issues to be addressed by measurement; thp indicators developed from the measurement
data are flexible and tailored by the development issues and related questions; and analysis
techniques are chosen based on what information is desired and what question(s) need to be
answered. Analysis can be directed at assessing the feasibility of development plans,
identifying new issues, tracking issue improvement trends, projecting schedules based on
performance to date, defining possible development tradeoffs, and evaluating the
consistency and quality of development activities and products.

The measurement process and its components are implemented on an ongoing basis
throughout the development. The defined data parameters are measured, processed, and
analyzed within a flexible assessment structure. This allows for the measurement process to
adjust to changing development activities and products throughout the life cycle. The key is
that the measurement process is driven by the program's issues.

The government program office implements its own measurement process independent of
the contractor. This includes collecting or receiving the actual data, not just the graphs or
indicators. The government program office must use the data to perform its own analysis,
independent of the contractor, then meet with the contractor to discuss and compare analysis

4 CMUISEI-92-TR-1 1

results. This independence will foster the government's confidence in the data and a better
understanding of the issues. This measurement process implies that the government
program manager is actively involved in managing the contract.

For the software measurement process to be effective, it needs to be an integral part of the
program manager's decision-making process. To accomplish this, insights gained from the
measurements should be combined with program knowledge from other sources in the
conduct of daily program management activities. It is the overall measurement process that
adds value to the data for the program manager, not just the graphs or reports. The following
steps are necessary to integrate the measurement into daily program management activities:

1. Collect measurements that are targeted to specific program issues and that will aid
in understanding and improving the technical and management processes.

2. Use the measures together with other management information to improve insight
into progress and risks. For example, when addressing schedule risk, look at
related analyses of staffing and schedule progress.

3. Establish means to investigate both management and technical issues further.
The software measurement process is often the starting point for obtaining insight
into the entire program. To isolate specific causes of trends apparent from the
measures, it is often necessary to ask additional questions. The value of the
software measurement process in such cases is in identifying the questions that
need to be asked.

4. Identify and implement changes to improve the program, including any needed
improvements to the measurement process.

The measurement process needs to be consistent, yet flexible enough to address changes
since they occur in all phases of software acquisitions. Change in the acquisition process is
inevitable as the development proceeds and requirements become better defined: cost,
performance, and schedule estimates are refined; personnel, machine, test, and support
resource requirements are identified; and insights from the measures themselves are gained.
As the issues change, the program manager should adapt the measurement process to
address the changes. However, definitions of key data elements (e.g., lines of code) should
be consistently used. The proposed software measurement process is different from a static
approach by:

* Separating issues about the data (e.g., accuracy or timeliness) from the program
issues by carefully defining and validating the data.

" Interpreting the data by using knowledge of the data, related program issues and
risks, corrective action plans, and industry-wide software engineering experience
(e.g., models or databases).

" Responding to changing program issues and needs during development by
enhancing the measurements and data by iterative data collection and analyses.

" Producing end-item products from the measurement process (i.e., the indicators and
accompanying analysis) that are objective and explainable.

CMU/SEI-92-TR-1 1 5

To summarize, a software measurement process should:

" Provide insight into known software issues and identify new software issues.

" Use a consistent methodology that allows the software measurements to be
objectively applied and evaluated throughout the program's life cycle.

" Allow the measures to be modified as the program's products and activities evolve.

" Enhance the program office's technical and program management processes through
the use of quantitative data.

1.6 Common Program Issues

The measures provided in Chapter 3 can be used during the entire software development
process. They were chosen because they seem to be the most useful measures, of those
commonly accepted and used, to help the program manager address issues common to all
software programs. As with the development of other system components, the key issues for
software development relate to resource adequacy and expenditure, development progress
and schedule, and the quality of the interim and final products. The nature of software
development results in these three areas being strongly related. Issues with software quality,
for example, can in many cases be directly attributable to schedule and resource constraints.
This requires that the software measurement process address the relationships between
several types of software data.

Issues related to the adequacy and expenditure of resources include:

" Staff availability and stability

" Funding adequacy

* Spending rate

* Allocation of resources to key activities (e.g., documentation, configuration
management, or testing)

* Productivity rate assumptions

* Size estimate accuracy

* Subcontractor allocations

* Computer resource adequacy

6 CMU/SEI-92-TR-11

The progress issue is simple; will the contract be completed on schedule, and if not, when
will it be completed? Questions about the progress that program managers typically have
include:

" Schedule (milestone commitments); is the contractor meeting commitments on time
and within a prescribed level of quality?

" Development progress; what is the true (objective) progress of the contract?

" Schedule and forecasts to completion; are they realistic?

" Size estimates and forecasts; are they realistic?
" Functionality allocations; are they shifting from earlier to later builds?
" Productivity rate; is the planned productivity rate being achieved?

* Rework; are high levels of rework having an impact on progress?

The technical quality issues include both the quality of products being produced and the
quality of the processes used to produce the products.' Here the program manager is
concemed that interim products are stable and complete so that successive processes using
those products do not compound mistakes (i.e., defects) and thereby drive up cost through
added rework. Questions about the technical quality that program managers typically have
revolve around issues regarding:

* Utilization of target computer resources, e.g., spare capacities and throughput.
" Problem reports, e.g., severity of problems, number of problems, timely resolution of

problems, and high density levels of problems in products or processes.

* Completeness, e.g., product and process exit criteria.
" Product stability and volatility, e.g., requirements, design, and functionality

allocations.
" Process stability and volatility, e.g., procedures and standards conformance.

" Rework, e.g., later processes finding defects caused by earlier processes.
" Defect rate, e.g., excessive defect rates could effect future progress.

The basic measurements discussed in Chapter 3 can be tailored by defining and collecting
data that help address the issues identified as key to the program being managed. The
measurements further described in Chapter 3 that have been found useful in addressing the
common program issues are:

* Software size: Alerts the program manager to changes in the estimate(s) and/or
actual software size. As the size grows beyond what was expected, the probability of
the schedule and therefore the budget being exceeded also increases.

" Effort: Tracks the staff hours being expended by the contractor during the various
development activities and for the entire project. Software development is a human
intensive and dependent activity, making the effort expended the largest and least
controllable cost variable (BROWN]. The effort measurements are particularly useful

CMU/SEI-92-TR-1 1 7

because it alerts the program manager to changes to and deviations from the plan
that could drive the cost up and cause the budget to be exceeded.

" Staff: Gives the program manager insight into whether or not the contractor has a
staff that is stable and able to do the job. The contractor's staff is tracked according
to predefined and agreed upon labor categories. Also tracked are the losses (staff
turnover) and additions of staff by labor category. Losses that result in a higher than
expected staff turnover for the project may jeopardize the project's quality and
expected productivity rates because replacement staff must be trained to become
familiar with the software being developed and with the decisions that have been
made.

* Milestone performance: Tracks the contractor's performance toward meeting
commitments to complete activities and their formal milestones and interim events. If
interim schedule commitments are met, the whole project is more likely to stay on
schedule.

" Development progress: Tracks the progress of the development by quantifying and
tracking the work completed. Work items should have predefined entry and exit
criteria to determine when they are started and completed. The program manager
counts those items that have been completed, knows how many need to be
completed, and, therefore, has a quantitative method to determine how much work
remains. This is done for each phase of the project by quantifying the work to be
completed that produces interim products.

* Software defects: Tracks the evolving quality of the products as measured by the
number of closed and open defects. Defects can be tracked by product (e.g., errors
discovered during testing or peer reviews) or by process activity (e.g., action items
from reviews or comments from a document review). A defect can be recorded and
tracked against anything that would cause the contractor to rework an item that has
passed through its exit criteria. Using this measure, the program manager can help
determine the level of resources needed, the progress made, and the technical
quality of the software and the processes used to develop it, as well as have an early
indication of the requirements to support the software after it is delivered.

° Computer resource utilization: Gives the program manager early insight into
whether or not the upper limits for computer resources will be exceeded. For
example, the software may have performance requirements and may also need to
allow for future expansion all within a known hardware configuration.

The intent is to provide measurements that give insight into issues. An argument can easily
be made that each measure above provides insight into each of the three common issues
(resources, progress, and technical quality). Figure 1-1 shows the issue to measurement
relationships discussed in detail in Chapter 3. From Figure 1-1, a program manager can
determine what measures are needed to give insight into his or her issue. The exception is
the software defects measurement that will indicate levels of required rework, thus affecting

S CMU/SEI-92-TR-1 1

the resources and progress issues, and can also indicate the technical quality of products
and processes.

Resources Progress Technical Quality

Staff
Effort Software

Defects Computer
Software Milestone Development Resource

Size Performance Progress Utilization

Figure 1-1 Cross Reference of Metrics to the Issues They Support

1.7 Constraints and Limitations

Software measures are valuable tools for gaining management and technical insight into a
software program; however, they are not a panacea. To implement a software measurement
system effectively, program managers must be aware of the following constraints and
limitations associated with the application of software measurement:

" Measurements are used as indicators, not as absolutes. There is a strong
temptation to seek absolute answers from measures. The role of measurement is to
provide insights into the software development, which are based on objective data
that might not otherwise be gained or be as timely. Often the measures prompt
additional questions and insights that are not directly apparent from the measures
themselves. For example, the manager may want to determine why the staff level is
below what was planned. Perhaps there is some underlying program issue or
perhaps the plan was inappropriate.

This leads to a corollary constraint: Measurement cannot be applied in a vacuum.
Insights gained through analysis of measures must be combined with program-
specific knowledge to reach the correct conclusion.

" Evaluations based on measurement are only as good as the input data. Quality
of the input data can be measured in three ways: timeliness, consistency, and
accuracy. If the data isn't timely, it is of little use for making decisions associated with

CMU/SEI-92-TR-11 9

the current program status. Even If the data is timely, the data elements must be
consistently defined and accurately collected. A deficiency in either of these areas
can skew the measurements derived from the data and thus lead to false
conclusions.

This leads to the following corollary constraint: Measures are representative of the
software development process that produces them; i.e., the more mature the software
development process, the more advanced the measurement process. A well-
managed program with a well-defined data collection process that is an integral part
of the developers overall process will provide better data than a less mature software
development and collection process.

" Measurement must be understood to be used and be of value. Measurement,
like any other management or technical tool, must be understood by the program
managers. This means understanding what the low-level measurement data
represent and what the intentions are of the overall measurement process. The
program manager must also learn when to look beyond the data and measurement
process to understand what is really going on. For example, if there is a sharp
decrease in problems being discovered at the same time there is a large increase in
problem resolution and close-out, the initial conclusion might be that the number of
latent problems is decreasing. However, in an environment constrained by labor
resources, it is equally likely that the problem discovery rate dropped because
engineering resources were moved from software problem detection (e.g., testing) to
software problem correction.

" Measurement should not be used against the contractor (or other
organizations). The measurement process requires a team effort. While it is
necessary to impose contractual controls to implement software measurement on a
contract, it is important to avoid making measurement an adversarial issue with the
contractor. The contractor will be sensitive to the program managers use of the
measures to quantify its performance and will resist supporting the measurement
process if the results are used against it. Instead, the measures should serve as the
basis for interactive resolution of development process concems. Measurement
should be used as a problem identification and resolution tool targeted toward making
the processes and products better. While measures may deal with personnel and
organization data, use of this data should focus on constructive process-oriented
decision making rather than blaming specific organizations or individuals.

* Measurement cannot identify, explain, and predict everything. An effective
measurement process can identify and help explain many software program
anomalies and can identify trends that support forecasting of performance. However,
measurement cannot identify every potential problem nor explain every situation. It
would not be practical or cost-effective to attempt a measurement process that tried
to quantitatively characterize every aspect of a software program.

10 CMUISEI-92-TR-11

* The measurement process cannot be exclusively done by the contractor. When
initially using measurement, program managers may be tempted simply to impose
requirements on the contractor to collect data, generate and analyze measures, and
deliver completed measurement graphs and reports. In the ideal scenario, a
contractor already has a measurement process in place. So why should the program
office get involved? For three reasons: 1) the measurement process is iterative; not
all desired measures and display formats can be predetermined since issues and
problems vary throughout the program's life cycle; 2) the natural tendency of the
contractor will be to present the program in the best possible light; independent
govemment analysis of the data is required to avoid possible misrepresentation of the
program; and 3) the measurement process needs to be issue driven, and the
contractor and govemment program office will have inherently different issues.

" Causal use of direct comparisons of programs should be avoided. Because no
two programs are alike, it is inappropriate to simply use data from past programs as
the estimates for current programs. Program managers can, however, characterize
their programs by using past, similar programs to determine the realism of projected
plans and costs. In this way, historical databases and other types of program
comparisons can be used to help develop realistic estimates.

" A single measurement should not be used. No single measure can give the
insight needed to answer or address all program issues. Most issues will require
multiple (and seemingly unrelated) data items to characterize the issue. This, and the
fact that measures are interrelated, implies that a program manager needs to
correlate trends across measures.

CMU/SEI-92-TR-11 11

12 CMUISEI-92-TR-1 1

2. Data Definition and Collection

The basis of an effective software measurement process is to get quantified, low-level data
so that 1) software development issues can be identified and clarified early enough to adjust
plans and mitigate problems, and 2) progress can be tracked against plans. The concepts
below will help guide program managers in meeting these objectives.

2.1 Deciding Which Measures Are Required

The question of what data to collect and how to define that data is driven by the program
manager's current and projected software issues and characteristics of the software
development process and products. Chapter 3 gives a common set of software measures to
consider. Those measures and suggested data inputs were chosen based on issues and
problems that are common to all software developments.1 To tailor or expand the set, the
program office needs to identify issues not addressed by the measurement set, combine the
issues into a common list, set the priorities for the issues, and determine which of the issues
can be addressed with the software measurement process. The program manager can then
determine what data is needed to support insight into the issues. However, not all issues can
be predetermined or projected; therefore, the program manager also needs to include
provisions that allow the process to be flexible so that it can be modified to provide insight
into unforecasted issues.

Once the issues are identified, the program manager and the contractor must agree on
definitions of the entry and exit criteria for the process and products, all data inputs, the
standards for acceptance, the schedule and progress estimation methods, the collection
methods, etc. before awarding the contract. For example, the program manager and the
contractor must agree on the definition of source lines of code (SLOC) and how and when
the SLOC will be estimated or counted (or both when applicable). This entire process and all
of its decisions and agreements should then be written into the contract.

Once the data collection has started, the definitions should not be changed. The most
important data concept is that of consistency in the definitions. Changing a definition after
the data collection has started produces variations in the trends that could confound the
analyses and camouflage performance or related problems. However, sometimes definitions
will change. When they do, it becomes critically important that the government program
manager understands the change and how the change affects data that has already been
collected.
When determining what data to collect, the preferred data is that which is a direct result of
the contractor's process. For example, count the number of computer software units to be

1 Many studies and reports have documented the problems and issues regarding software

development, including [USAF], [SEI89], [DEMARCO], [BROOKS82], [CONGRESS], and [PACKARD].

CMU/SEI-92-TR-1 1 13

developed by looking in the preliminary design documentation. Limit the use of data that is
below the granularity supported by the contractor's process. For example, when collecting
software defect aata and accompanying process information about the defects, use the
contractor's process. To do otherwise might not be cost effective and may adversely affect
the productivity and schedule of the contract. As the development progresses, new
techniques, tools, etc. might emerge. Tailor the data to these techniques, but as the data
collected changes, also change your understanding of what is included in the data. The data
collected should be that which is a natural result of the process used. Avoid collecting data
that is derived (i.e., data resulting from an algorithm) or ill-defined and cannot be traced back
to the contractor's process. Ill-defined data confuses the analysis and possibly leads to
incorrect conclusions. If data must be derived (e.g., productivity data), it is better for the
program manager to derive the data than it is for the contractor to deliver the data already
derived. In this way, the program manager retains confidence in the data and better
understands the issues by developing the analysis from the low-level data items that best
represent the processes and products.

The program manager must realize that most issues will require multiple (and seemingly
unrelated) data items to characterize the issues. For example, if the issue is the amount of
rework and how it is affecting the contractor's progress, the program manager would need to
have data on progress, the number of items being reworked, how much effort is being spent
on rework, how effective the process is at finding items that need rework early, etc. If an
issue is how the amount of rework is affecting the budget or end quality of the product, a
different set of data items would be collected. The data needed to characterize this issue is
also dependent on the development phase (e.g., requirements, design, or coding). Using the
rework example, determining what items to use for measuring rework will be different during
the requirements phase than during the design phase.

The way a data item is partitioned can also help to improve the insight into issues. For
example, the data could be partitioned by:

* Processor (i.e., target platforms)

" Language

" Organization or subcontractor

• Computer software configuration item (CSC), computer software component (CSC),
or computer software unit (CSU)

• Configuration (e.g., avionics of two different airplanes)

" Severity
* Incremental build

" Facility/Lab

" Work breakdown structure (WBS) element
The level of partitioning will have an impact on how the data is used and how useful the data
will be. For instance, if effort is collected at the organizational level rather than at lower
levels of a WBS, problems (such as certain modules or units not receiving enough testing)
may be disguised. The partitions should highlight the area(s) of concem so that trends from

14 CMU/SEI-92-TR-1 I

the indicators can help the program manager determine if the issues are being mitigated.
For another example, SLOC can be partitioned by newly developed, modified, or reused. If
only total SLOC is measured, changes to where the SLOC comes from may go undetected.
These changes may reflect significant differences in the effort and schedule required to
complete the project. In general, the lower the level of the data, the better the probability of
isolating problem areas. However, the lower the level of the data, the higher the cost of the
measurement process. Therefore, tradeoffs will need to be made.

The contractor's plans, assumptions, models, and historical data provide the basis for using
actual project data. There are four types of data that program managers will use:

" Historical

* Plan

" Actual
" Projections

The contractor will use historical data and assumptions to generate estimates. The
estimates, along with other knowledge of the system and environment, are then used as the
basis for planning the project. Actual data is collected monthly by the government program
manager and used as the basis for comparing the contractor's performance to its plans and
for projecting future trends. The government program manager also uses historical data to
determine the realism of the contractor's plans. After the plan is accepted, the government
program manager uses actual data to ensure that the contractor is managing the project
according to the plan.

2.2 Collecting the Measurement Data

Plan data is collected from contract documentation (e.g., the statement of work, the
contractor's proposal, or software development plan). The program manager has actual data
collected or reported monthly starting the month after the contract begins and continuing until
the contract ends. However, not all data is collected monthly throughout the contract. For
example, actual computer resource utilization data is not available during early development
(although prototypes can be developed to simulate performance if the resource utilization is
critical).

Whenever data is collected, its time of collection and source should be noted. The
contractor's data should be treated as proprietary to prevent abuses and reduced availability
and to alleviate the contractor's concems about how the data will be used. The contractor
will already be concerned about the use of the data and using data as a tool to quantify its
performance. If measurement becomes an adversarial issue, the quality and availability of
the data will probably be greatly reduced. Therefore, the data should be used as a tool for
improving communications with the contractor and as a basis for jointly identifying and
resolving issues.

CMU/SEI-92-TR-11 15

Along with the source and time, assumptions and other knowledge about the data should be
noted. Later, when analyzing the data, the program manager will need the data and all the
information available about the data to completely understand the information. For example,
if actual effort expended is lower than expected, the contractor might have had uncontrollable
problems such as staff awaiting security clearances or waiting for equipment to be delivered.
Other types of information could signal potential problems (i.e., changes to plans).

The program manager can use tools to help collect, manage, and report the data. Such tools
can automate many labor intensive and tedious tasks. Without tools, a measurement process
may not be feasible, both from an economical and technical standpoint. The two primary
types of tools are collection tools and databases.

Collection tools will facilitate the timeliness, accuracy, and efficiency of the process. Not all
data can be collected with an automated tool, but data such as lines of code, effort, staff, and
computer resource utilization benefit the measurement process when collected with an
automated tool.

Databases expedite reporting and provide the overall efficiency needed to make the
measurement process viable. A database allows the data to be stored, and it can include
many different attributes that provide the program manager multiple views when addressing
issues. At times, it may be best to share a database with the contractor or have the
contractor maintain certain databases (e.g., a defect database). Here the preferred method
is to have the contractor maintain a defect database with on-line access available to the
program manager. In this case, the program manager has data on defects readily available
and occasionally audits the information to validate the data and the process of updating the
database.

Not all data can be obtained with an automated method; therefore, some other options
available to the program manager include:

" Collecting data from other deliverables (e.g.,. plans, specifications, and status
reports).

" Collecting data from activity output sources (e.g., configuration management or
software quality assurance files).

" Collecting data that is the output of processes (e.g., inspections, peer reviews, audits,
or formal reviews).

* Having data reported via a contract data requirements list (CDRL) item.

However data is obtained, it is best to use one primary method to collect the data and a
different method to validate the data and primary collection method periodically. To lessen
the cost of data collection and analysis, measures from all sources of CDRL items could be
coordinated so that they are collected only once. For example, data and analysis from
configuration management activities, performance monitoring, and cost or performance
reporting may provide much of the information required for progress assessment. Also, the
development of common definitions and parameters could extend beyond the data collection
area.

16 CMU/SEI-92-TR-1 I

2.3 Understanding the Data

Once data is collected, the program manager will need to analyze it to determine if identified
issues are being mitigated and new issues are being identified. Before making
determinations from the data, the program manager needs to consider the data and
thoroughly understand what it represents. To understand the data:

" Use multiple sources to validate the accuracy of data and to identify differences and
causes in seemingly identical data items. For example, when counting software
defects by severity, spot check actual problem reports to ensure that the definition of
the various levels of severity are being followed and are being properly recorded.

* Investigate the process for preparing the lower level data and understand what the
data represents and how it was measured. When analyzing software size, for
example, how are the estimates being prepared? What assumptions are being used
to generate the estimates? Does the total represent a mix of estimates and actual
data?
Separate data and its related issues from the program issues. There will be issues
about the data itself (sometimes actually negating the use of certain data items).
Program managers shouldn't get bogged down in data issues, but instead, should
focus on the program issues and the data items that they have confidence in to
provide the necessary insight. For example, suppoose that 50 problem reports are
being generated per week and only 4 are being corrected. The program manager
should not be bogged down with what 4 were fixed or what kinds of problems are
included in the 50. The progran manager should be concerned that the backlog of
problems is rapidly increasing and that the devolopaont process itself may be out of
control.
Do not assume that data from different sources (e.g., SQA or subcontractors) is
based on the same definition, even if predefined data definitions have been required.
For example, for SLOC data, even though a specific definition was required, different
organizations may modify that definition. Sometimes these modifications may be
made for an acceptable reason such as an organization having an in-house code
counter. In this scenario, the program manager must understand the definition and
any differences or variability it will cause when using the data.
Realize that development processes and products are dynamic and subject to
change. Differences of data originating at different points in time may simply reflect
the differences in the processes and products. For example, the number of
integration tests may be greater than originally planned if the number of CSUs
increases or more testing is recommended at a milestone review because of
unforeseen complexities. The amount of change must be analyzed over time. Some
change is natural and healthy and shows that the contractor is responsive to evolving
program needs; however, too much change could indicate that the process is not
stable or the original requirements were not adequate.

CMU/SEI-92-TR-1 1 17

For example, Figure 2-1 shows monthly estimates for software size. There is some
variability in the first nine estimates. Estimate ten, however, drops significantly. This should
prompt the program manager to ask questions about the data and understand exactly what is
being counted. The notation on the figure shows that a new methodology was used for
estimate ten. The program manager needs to understand the new methodology, how it
impacts other assumptions and data inputs, and how it affects plans that used the size
estimate to make other estimates (e.g., effort and schedule planning). Estimate thirteen is
also noticeably different in that it includes a significant amount of reused code. Again, the
program manager needs to understand the data and the program assumptions used to
generate the data.2

Commerical Code New Code O Reused Code

New Methodology

1200

1000--

800--

0

S600--

WI

.N 400or)

200--

M1 M3 M5 M7 M9 M11 M13

M2 M4 M6 M8 M1O M12 M14

Monthly Estimates

Figure 2-1 Example Illustrating the Need for Understanding Data

2 Many comments were received that this example is unrealistic. However, this is data from a real

program and is used to illustrate a point. It does reinforce the point that you MUST understand data.

18 CMU/SEI-92-TR-1 1

2.4 Using the Data

Data is the basis for all analyses. Not only is it used to generate indicators and graphs, but
assumptions, other knowledge, and understandings about it are used extensively during
analysis to gain insight into issues.

Analysis of the data must involve all levels of staff in the development process in an
integrated effort toward improving performance. Successful implementation of software
measurement depends on the ongoing interaction between the contractor and the aco'uisition
program office. All levels of staff in the development process must understand the analysis
process, and the program manager must understand the analysis results in the context of
what is happening on the program to improve his or her decision making abilities.

Measurement data need to be provided by the contractor, then processed and analyzed by
both the contractor and the government. The contractor needs the data to manage its own
process, to adjust its plans, and to provide meaningful status reports to the govemment.
Experience also has shown that the government must have access to the basic data so it can
independently analyze issues and interpret the results.

When processing the data, techniques that can help the program manager understand and
analyze it include:

" Partitioning data to depict particular differences, e.g., by organization, processor, or
CSCls (computer software configuration items). For example, when using the effort
measures, show the effort expended by subcontractor and CSCl.

* Separating inaccurate, inconsistent, or obsolete data from meaningful data. As the
data is better understood, it will be realized that not all data items received are useful
either because the items are outdated, low confidence levels in the validity of the data
exist, or the data are inconsistent with other data items that are considered to be
accurate and valid.

* Putting data sources (document, organization, date, etc.) on the graphs to support
interpretations. Knowing the source and the date of the data will help the program
manager to interpret it. However, if the contractor is explicitly or implicitly named, the
program manager should handle the data as sensitive or proprietary.

" Putting major milestones on the graphs to support an overall view. To better
understand how the data being displayed impacts or interplays with the overall
process, major milestones (e.g., PDR and CDR) could be annotated on the time axis
of graphs. This gives the program manger more insight into how trends in the data
may impact the contract.

" Reviewing changes in plans or methods (e.g., build content and CSCI allocation) to
determine applicable comparisons (i.e., data inputs to graphs). The program
manager should preserve original baselines and assumptions so that adjusted plans
accurately present progress history. When generating the graphs, the program
manager should include the original baseline plan along with the currently approved
plan and actual data. The program manager could also include other plans, both

CMU/SEI-92-TR-1 1 19

approved and unapproved, for additional insights into the stability of the contract and
plans. To do this, the graphs need to include the various plans as distinguishable
curves as in Figure 2-2. This provides the program manager additional insight into
the stability of the contract and plans.

Plan: (Contract Award) Plan (SDP) Plan (PDR)

3 0 0 ------------------

250-

'a0C -

0 Plii(CR

10

M6 M7 M8 M9 M10 M11 M12 M13
Months

Figure 2-2 Example Showing How to Track Multiple Plans

In summary, the objective is to have an understandable set of measurement data that can be
processed into different reports and graphs to address and help answer different issues and
questions as they occur. To accomplish this, program managers should collect much of the
data themselves and at a low enough level so that the data can be clearly understood and
represented in many different ways.

20 CMU/SEI-92-TR-1 1

3. Software Measures for Common Software Development
Issues

This chapter highlights how a government program office might define, collect, and use data
to address issues such as those outlined in Section 1.5.

3.1 Software Size

3.1.1 Purpose (Software Size)

Software size measurements give the program manager an indication of the size of the
software being developed. Software size is used as an indication of the amount of work to
be done and the amount of resources needed to do the work. The data collection records of
size estimates and actual size, together with the assumptions from which the estimates were
derived, can provide valuable historical data for improving the processes to estimate cost and
schedule, thereby improving overall project management and planning.

3.1.2 Description (Software Size)

The program manager tracks the actual software size, compares the estimate(s) (both overall
and for each incremental build), and then analyzes the trends for indications that the size of
the software is growing or that functionality is moving from earlier to later increments.
Estimates of various size attributes are compared with actual or new estimates monthly
throughout the life cycle of the program. The basic size attributes are:

• Number of requirements: gives an early indication of the software size based on
actual data.

, Number of CSUs: indicates the amount of work to be completed for each software
increment.

° SLOC: gives an indication of the accuracy of the estimates by comparing actual
values to estimates.

CMU/SEI-92-TR-1 1 21

3.1.3 Data Inputs and Collection (Software Size)

The data inputs the program manager collects or has reported via a CDRL item for the
software size measurements are:

* Number of distinct, functional requirements in the Software Requirements
Specification (SRS) and Interface Requirements Specification (IRS): The number of
requirements is partitioned by functional area for each CSCI. Starting with the
system requirements, requirements data are collected from the System/Segment
Specification (SSS) and then throughout the development process for each SRS and
IRS.

" Number of CSUs as documented in the Software Development Plan (SDP) or the
Software Design Document (SDD): The CSUs are tracked by CSCI/CSC for each
build. The number of CSUs is estimated early in the process and is then tracked with
actual data from the SDD(s).

* SLOC estimates for each CSCI and build and actual data from the source listing for
each CSU: For each CSCI's incremental build, SLOC are partitioned by
implementation language (e.g., Ada, C, or assembly) and by the amount of new,
modified, and reused SLOC. The number of SLOC to be developed is estimated in
the contractor's proposal. These estimates are then updated monthly or during
reviews and are tracked and compared with the actual data as it becomes available.

3.1.4 Sample Indicators, Analyses, and Actions (Software Size)

Software size has a direct impact on the total development cost and schedule. A program
manager can use the size measure to help answer the following questions:

* How much do the size estimates change over a period of time during the
development process?

" How much do the actual data deviate from their estimated values?
* How does the trend of the estimates and the actual data affect the development

process?
" Is the ratio of reused to new code changing and what are the implications to cost and

schedule?

Major variations in the size data could indicate:
* Problems in the use, appropriateness, or validity of the model used to develop the

estimates.
" Instability in requirements, design, or coding.
" Problems in understanding the system to be developed.
* An unrealistic original estimate for the system to be developed.
" Unachievable target productivity rates [BEAM].

22 CMU/SEI-92-TR-1 1

Significant changes in estimates should trigger a risk assessment, preferably using size-
based models to compare effort and schedule to planned values. For example, in Figure 3-1
the size of the software to be developed has nearly tripled from M1 to M6 (where M1 is the
first month after contract award). Such a size increase could indicate that the contractor
didn't understand the system to be developed, the requirements for the system to be built
have changed significantly, or the original estimate was unrealistic. Such trends-and even
ones of much lesser magnitude-indicate the estimated cost and schedule may not be met.
Even if the estimated cost and schedules are met, the quality of the product could be lower
than desired.

D

400
C

300 --
,U
o 2001
l__

S100
E
0

M1 M2 M3 M4 M5 M6

Months

Figure 3-1 Sample Software Size Measure - CSU

The program manager uses the CSUs per build primarily to reveal postponement of
functionality to meet schedule commitments. For example, in Figure 3-2 a fourth build shows
up at M4 and the functionality of build number 1 is reduced. This and the magnitude of
growth should signal a warning to the program manager that the contract's cost and schedule
(and maybe the quality of the products) are at risk.

CMU/SEI-92-TR-1 1 23

Build No. 1 (= Total CSUs

I Build No. 2 (460)

Build No. 3 (460)
- - EM Build No. 4

(n125--

(270)

(100 (190) (275)
(10

3: 75
0
C,)

W 50

E
0 25

M1 M2 M3 M4 M5 M6

Months

Figure 3-2 Sample Software Size Measure - CSU Per Build

Both of the figures indicate a contract with visible cost and schedule risks. In such cases, the
likelihood of a major replan and possible contractual changes (e.g., engineering change
proposals) increases. If funds and time are available and mistakes are not repeated, then
contractual changes could be useful for replanning the project and mitigating some of the
exposed risks.

To illustrate further the importance of tracking changes in plans, refer to Figure 3-3. Figure
3-3 shows the change of size estimates for each build from the second plan submitted to the
seventh. Danger signs in this figure are the delaying of the development of code from earlier
builds to a later build (i.e., build number 5) and the disappearance of the COTS (commercial
off the shelf) code. Here, the program manager needs to investigate why there is such a
postponement and what is being postponed. The program manager also must correlate the
postponement with the other measures, most notably the development progress measures
(Section 3.5). Such a postponement might have been predicted much earlier in the
development by correlating the change in plans with other measures.

24 CMU/SEI-92-TR-1 I

-New Code
30- COTS

u20--

0

--.

-10-

C

0

-20

2 3 4 5
Build

Figure 3-3 Example Showing the Postponement of Code Development From
Plan 2 to Plan 7

Other uses of the size data include:

" Correlating it to other measures to determine its validity. For example, size data can
be correlated with the effort measures (Section 3.2) or other size data (e.g., number
of requirements).

* Correlating estimated SLOC with staffing plans. This allows the program manager to
assess the realism of planned staffing levels using the size measures.

" Determining if actual productivity rates are deviating from those used to estimate the
cost and schedule. If the rates used to estimate the cost and schedule are not
realized, then the budget and schedule are at risk.

CMUlSEI-92-TR- 11 25

3.1.5 Other Measurements and Partitions (Software Size)

Based on program issues, the program manager may also want to consider the following
software size measurements and partitions:

" SLOC for each processor
" Object code size
* Database size in terms of bytes, records, or fields
* Function points [IFPUG]
" Design language statements
* Design objects
• Pages of documentation
" Test cases
" Partitions by subcontractor

3.2 Effort

3.2.1 Purpose (Effort)

Effort measures show the relationship between planned and actual staff hours expended.
They are used to monitor whether work products are being developed according to planned
expenditures of resources. Effort measures allow the program manager to track the
contractor's effort and to make inferences about the cost.

3.2.2 Description (Effort)

The program manager tracks the number of staff hours expended monthly starting at contract
award and compares planned versus actual level of expenditures. Staff hours may be
partitioned by direct labor and support staff categories, experience levels, discipline areas
(SQA, testing, programming, etc.), or activity (requirements analysis, design, etc.).

3.2.3 Data Inputs and Collection (Effort)

The program manager has the actual staff hours expended reported each month. For each
contractor labor category, the data inputs are reported via a CDRL item. (The labor
categories are the same as those used for the staff measurements in Section 3.3.) From the
contractor's proposal and development plans, the program manager extracts the planned
staff hour expenditure rates for comparison with the actual data. The program manager
should have actual staff hour expenditures reported monthly starting at contract award and

26 CMUISEI-92-TR-1 1

continuing for the life of the contract. The data is collected for all non-government
contributors. That is, it includes data for subcontractors, independent verification and
validation (IV&V) contractors, separate test organizations, etc. To provide better insight into
and control over the project, staff hours may be partitioned by:

" Development discipline area (SQA, configuration management, analysis,
programming, etc.)

" Development activity (design, code and unit testing, etc.)

• WBS elements at the level that software activities are defined

3.2.4 Sample Indicators, Analyses, and Actions (Effort)

Each month the program manager collects the number of staff hours expended and
aggregates the data to obtain the total staff hours expended for the contract.

The measures for monthly staff effort expended tracks staff hours expended against staff
hours planned. Tracking effort monthly lends insights into the stability of the software
development and the risks of not completing the project within cost and schedule. If the
effort expended exceeds ,)Idns and work progress fails to meet schedule plans, the quality of
the software may also I e in jeopardy.

The measuremcnis for the total staff effort expended tracks the total number of staff hours
planned to be expended against the actual number expended up to a point in time.
Information from the aggregated data is used to determine if the contractor is meeting the
plannod amount of effort. When used in conjunction with the development progress
measures, the data can provide the planned and actual number of staff hours expended to
complete each of the development activities. The primary reason for tracking the total effort
is to be forewamed of cost overruns.

A variance between the planned number of staff hours and the actual number of staff hours
expended will inevitably occur. How large must this variance be for the program manager to
take action? The answer to this question depends on the issues that are important to the
program. For example, consider a program that consists of building customized hardware
where the software is needed in the early phases of the project to test the interaction
between the hardware and software. In this scenario, changes to the schedule may not be
tolerable. The program manager needs to determine how much of and how long an
underexpenditure of staff hours can be tolerated to keep the project on schedule. To do this,
the program manager must also use the milestone performance, software size, quality
progress, and development progress measures to make inferences and management
decisions.

Total effort expended data, when graphed, is usually in the form of a flattened S-curve, as
depicted in Figure 3-4. The flattened S-curve reflects a smaller staff at the beginning of the
project (a smaller sloped portion of the curve), a larger staff during the main part of the
project (a more steeply sloped portion of the curve), and a reduction in staff at the end of the
project (another smaller sloped portion of the curve).

CMU/SEI-92-TR-1 1 27

The total effort expended data will most likely show a variance between staff hours planned
and staff hours actually expended. However, because this is cumulative data, the difference
between the plan and actual curves will not be large early in the project. For this reason, the
program manager should take notice of small but steadily increasing differences between the
curves.

Plan
m~mm~mActual

- 5 0 0 0 - --... -----
CD
01C

(n 4000-

I, ---. / illll'

2 0 0 0 iiiI II '

0U . liiiill

1000-

M1 M2 M3 M4 M5 M6

Months

Figure 3-4 Sample Total Staff Effort Expended Measure

Figure 3-5 shows an example using the monthly effort data. The curve indicating the
planned number of staff hours shows an orderly and achievable increase through
requirements analysis and detailed design, a semi-constant level around a maximum during
coding and unit testing, and an orderly decrease through integration and delivery. (Such a
curve would exist for each iteration of activities.)

28 CMU/SEI-92-TR-1 1

Plan

iIIIl,,,,,,, Actual

8 0

0
o 60ii...... ... : i~

140

CD 20 "- -.111 :.-w :.. I i

t A B C D
Time

A = Requirements Definition and Analysis

B = Design
C = Implementation

D = Software/System Test

Figure 3-5 Sample Monthly Staff Effort Measure

Effort measures should be used with the measures for milestone performance, software size,
software defects, staff levels, and development progress. If there is a significant
underexpenditure of staff hours, the contractor may be having problems staffing the contract.
Other possible reasons for underexpenditure of staff hours include:

" Overestimating the software size: The program manager should correlate effort
measures with trends in the software size and staff measures. If the actual size data
is tracking below the plan curve, it may indicate that the size was overestimated or
that the contractor does not have an adequate number or the right experience mix of
personnel on staff. When both trends occur simultaneously, the project is usually
behind schedule.

" hisufficient development progress: By correlating the effort measures with the
development progress measures, the program manager can determine if under-
expenditure of staff hours is causing the development progress measures to track
below the plan curve. The staff measures should also be investigated to determine
whether the contractor has adequate staff to perform the task.

" Increasing levels of open problems: The program manager should correlate the effort
measures with the software defects measures. If the difference between the number

CMU/SEI-92-TR-1 1 29

of open and closed defects is increasing, additional staff may be needed or
redirected to correct outstanding defects.

If there is significant overexpenditure of staff hours, the contractor may have been forced to
absorb staff members from other projects that were ending. Other possible reasons for
overexpenditure of staff hours include:

" Underestimating the size of the software: The program manager should correlate
effort measures with the software size measures. If the size measures are tracking
above the plan curve, it may indicate that the size of the software has grown well
beyond the estimate, requiring the expenditure of more staff hours than originally
planned [BOEHM87].

* Insufficient development progress: By correlating effort measures with the
development and milestone performance measures, the program manager can
determine if the contractor is trying to make up delays by adding staff to the contract.
This may not be successful; according to one of Brooks' rules, "adding people to a
late project just makes it later." [BROOKS82]

" Increasing number of defects: By correlating effort measures with the software
defects measures, the program manager can determine if the contractor is adding
staff to correct a growing number of problems. This may indicate a software quality
problem.

3.2.5 Other Measurements and Partitions (Effort)

Depending on program issues, the program manager may also want to consider substituting
staff weeks, staff months, or even staff years for staff hours on the y-axis. The conversion
factor must be defined and documented (e.g., 156 staff hours equal one staff month) if a time
period other than staff hours is used as the y-axis variable. If the unit of measure on the x
and y-axes are of equivalent value (e.g., months and staff months) then the y-axis will
correspond to the number of equivalent planned and actual full-time personnel on the project.
(See Section 3.3.)

30 CMUISEI-92-TR-1 1

3.3 Staff

3.3.1 Purpose (Staff)

Staff measures give the program manager insight into the staffing labor categories used on
the contract. The program manager uses this insight to track the contractor's ability to
maintain a sufficient level of staffing to complete the contract [BOEHM87] and to track the
amount of the contractor's staff tumover. When used in conjunction with the effort measures,
the program manager also gains insight into the number of part-time people working on the
contract and the amount of overtime being worked (regardless of whether or not it is
compensated).

3.3.2 Description (Staff)

Typically, early development activities have a more experienced staff, i.e., a large percentage
of staff at the higher labor categories. As development progresses, however, experienced
staff get replaced by less experienced staff. Program managers track the actual staff levels
of the co ,tractor's labor categories and compare them to the levels that were planned to be
used. T Is measurement is analyzed by looking at and determining the impact of the
variances between the planned and actual staff levels. The program manager also tracks the
numb ir of people added and subtracted from the labor categories (i.e., staff tumover).

3.3.3 Data Inputs and Collection (Staff)

The program manager has the number of contractor staff by labor categories reported via a
CDRL item. To provide better insight into and control over the project, the staff labor
categories may be partitioned by:

* Development discipline area (SQA, configuration management, analysis,
programming, etc.)

* Development activity (design, code and unit testing, etc.)

" WBS elements at the level that software activities are defined

The program manager can specify in the request for proposal (RFP) an experience profile for
the labor categories for potential contractors to address. The labor category profiles and
staffing levels proposed by the contractor are used by the program manager as the plan for
comparison of actual data. The staffing levels should be planned for the length of the
development process.

The program manager should also define how to count the staff tumover and require specific
data on the turnover by labor categories and possibly the partitions above. The data is then
coil cted for all non-government contributors. That is, it includes data for subcontractors,
independent verification and validation contractors, separate test organizations, etc.

CMU/SEI-92-TR-1 1 31

3.3.4 Sample Indicators, Analyses, and Actions (Staff)

The program manager generates graphs of the staff data similar to the one shown in Figure
3-6 to show average staffing levels and turnover on the contract. A chart like Figure 3-6
would be generated for each labor category and for the contract overall.

Total

. Added
Lost

LU 0)

MM

Months

Figure 3-6 Sample Staff Measure

The total staffing level should show an overall decreasing level of experience (i.e., a
decreasing percentage of staff at the higher labor categories) because typically more
experienced personnel are assigned to the contract during the early development activities
(e.g., requiremen's analysis) than during later activities. (During the testing activity, staff
levels may rise but typically not as high as those experienced during requirements analysis.)

Insights into staff capabilities supported by these staff measures help the program manager
to identify situations where a lack of staff may cause problems in the program's technical
performance. Early insight into specific staff capabilities can also highlight staffing risk areas.
Examples of analyses that can be performed with the staff experience measure are:

Graphing the number of people charging by labor category (i.e., the number of staff
per labor category) coupled with the number of hours expended by labor category
(Section 3.2), shows the average hours expended per staff member. This information
allows the program manager to assess how people are being used on the project.
The use of too many part-time people may degrade the accountability and efficiency
of a project. Likewise, the overuse of a limited number of people may degrade the
quality of the products.

32 C MU/SEI-92-TR-11

" Determining if actual staffing is consistent with the planned levels and if there is
adequate commitment for using senior staff (i.e., staff from the higher labor
categories).

" Correlating the staff measures with the measurements for development progress,
milestone performance, and effort to determine if trends in these measures are
related.

3.3.5 Other Measurements and Partitions (Staff)

Based on program issues, the program manager may also want to consider the following
staff measurements and partitions of the staffing levels:

" Development activity (design, code and unit testing, etc.)

* CSCI

" Subcontractors

3.4 Milestone Performance

3.4.1 Purpose (Milestone Performance)

The milestone performance measures gives the program manager a comparison of actual
milestone completions against established milestone commitments. These measurements
quantify the contractor's performance toward meeting commitments for delivering products
and completing milestones.

3.4.2 Description (Milestone Performance)

Milestone performance measures help the program manager graphically portray planned
delivery dates, replanned delivery dates, and intermediate activities needed to meet the end
delivery dates. The milestone performance measure tracks progress and delays for activities
with respect to planned DOD-STD-2167A milestone events. These include system design
review (SDR), software specification review (SSR), preliminary design review (PDR), critical
design review (CDR), test readiness review (TRR), functional configuration audit (FCA), and
physical configuration audit (PCA). It also tracks interim milestone events defined in the
software development WBS leading up to the milestones. For each revision to the plans,
associated schedule delays are indicated and tracked to determine the impact of the
revisions and the delays associated with the revisions.

Other items that may affect milestone performance include tool development schedules and
deliveries of government furnished equipment (GFE) and government furnished information

CMU/SEI-92-TR-11 33

(GFI). If delivery of GFE or GFI is delayed, schedule and development progress may be
affected. Therefore, the program manager may want the requested schedule data
partitioned further to reveal the progress against these critical item dependencies.

3.4.3 Data Inputs and Collection (Milestone Performance)

The planned and actual data inputs the program manager collects or has reported via a
CDRL item are:

" WBS activity start and completion dates
" DOD-STD-2167A milestone start and completion dates
* Key interim product milestone start and completion dates

" Progress to date (overall and for each milestone's interim activity)

* Estimated slip (overall and for each milestone's interim activity)

Objective entry and exit criteria for each event and activity must be defined and agreed on at
contract award. It is also important to identify clearly the method of calculating progress to
date, for estimated slip, and for the revision status of planned events.

WBS activity schedules and data on actual activity progress are collected monthly throughout
the contract. The program manager notes the overall delay resulting from each plan revision
when the revision is submitted and relates the delay to the original plan and all approved
plans superseding the original.

3.4.4 Sample Indicators, Analyses, and Actions (Milestone Performance)

Experience has shown that late or unacceptable software products are good indicators of
schedule risk. These late and unacceptable products are shown on milestone performance
measurement graphs as slippage and can reveal contractor problems in maintaining the
planned schedule. However, the measures only show the program manager that a deviation
from the planned schedule exists; they do not explain why it exists. Milestone performance
measures also depict overlapping project activities and the impact of rework and contingent
risk abatement on schedule slippage through milestone completion estimates projected from
actual data.

The inputs for the milestone performance measures may be displayed as a Gantt chart as in
Figure 3-7. The chart shows planned events, actual events, and progress to date against
planned activities. The chart shows a delay between planned completion and the actual
activity or new estimate for completion. Large programs may have a set of tiered schedules
for each system component. From such a figure, the program manager also looks for
indications such as:

Excessive overlap of activities where dependencies are expected (e.g., excessive
amounts of coding activity completed before the design activity is completed). For
example, in Figure 3-7, Activity 3 and Activity 4 are scheduled to start at

34 CMUISEI-92-TR-1 1

approximately the same time. If Activity 4 depends on outputs from Activity 3, the
program manager should ask what work will be done on Activity 4 before it receives
the outputs from Activity 3.

* Successor activities starting before predecessor activities (e.g., coding starting before
detailed design is started).

" Larger slips shown in predecessor activities than in successor activities. For
example, in Figure 3-7, Activity 2 has slipped 40 days, yet Activity 3 is ahead of
schedule 10 days. If Activity 3 depends on Activity 2, then the program manager
needs to question how the 40 day slip will be made up.

Activity 1 (-0-)

Activity 2 = ti - - (-40)

Activity 3 (+10) n _V

Activity 4 (-25) --n

Activity 5 (-10)

M1 M2 M3 M4 M5 M6 M7 M8 M9

Number of Days
Ahead of (+) or Behind Date of Data

Schedule Collection

Figure 3-7 Sample Milestone Performance Measure

To determine the stability and progress of the schedule, the program manager could use a
table similar to Figure 3-8 which includes for each revision, the date, time since last revision,
and schedule change since the last revision. Records of milestone performance measures
can be a valuable historical tool for improving schedule estimation, particularly for
development efforts with characteristics similar to those of previous systems.

CMU/SEI-92-TR-1 1 35

Schedule Date Time Between Schedule Change

Revision # Revisions From Last Revision

1 6/15/88 12 months - 4 months

2 3/15/89 9 months - 5 months

3 3/15/90 12 months -2 months

Contract award date: 6/15/87

Data collection date: 4/1/90

Figure 3-8 Example Table Illustrating Milestone Performance Stability

The program manager can also prepare a figure similar to Figure 3-9 to show schedule
change data graphically. From Figure 3-9, the program manager can see overall slips in the
schedule. When the program manager receives data such as that shown in the first quarter
on Figure 3-9, he or she should be concerned and ask how the first milestone can be late
while succeeding milestones are early. Such a scenario usually leads to data similar to that
shown in the third quarter where all milestones are late.

36 CMU/SEI-92-TR-1 1

A = Milestone 1

B = Milestone 2

C = Milestone 3
+20 D = Milestone 4

BC
ABCD

"l 0

C UE

C

-2 =1Actual
O)

-' = Estimated

1 st quarter 2nd quarter 3rd quarter
CY 91 CY 91 CY 91

Figure 3-9 Example Measure Illustrating Milestone Performance Stability

Correlations with the defect measures should be made. Excessive emphasis on milestone
performance could be counter productive causing the contractor to neglect quality in lieu of
progress.

3.4.5 Other Measurements and Partitions (Milestone Performance)

The program manager could also use the following milestone performance measurements
and partitions to reveal critical risk areas that might be masked by aggregation:

" Project status at different levels (e.g., CSC, OSCI, build, and total software)
* Project status for software engineering environment and tools

Project status of GFE/GFI item deliveries

*Activities at lower levels of the WBS

Also, items on which activities depend and which may have a large impact on activity
completion could be reported and tracked [CORI].

CMU/SEI-92-TR-1 1 37

3.5 Development Progress

3.5.1 Purpose (Development Progress)

The development progress measures gives the program manager a quantitative indication of
work progress. The measurement uses data on the planned and actual progress of software
development activities to assess whether an activity is complete and the contractor is ready
to proceed to successive activities.

3.5.2 Description (Development Progress)

The program manager applies the development progress measures across the major
software development process activities, i.e., requirements analysis, preliminary and detailed
design, code and unit test, integration and test, and formal test. The development progress
measure is used to quantify the work to be done on key interim products of these activities,
e.g., CSUs designed or coded. Each of these development activities is further broken down
and quantified into work items that are small enough to allow progress to be seen monthly.
The work items should be natural artifacts of the contractor's development process.

3.5.3 Data Inputs and Collection (Development Progress)

The program manager collects the following planned and actual data or has it reported
monthly via a CDRL item:

* Requirements Analysis
- Number of software requirements in the System/Segment Design Document

(SSDD) that are documented in the SRS
- Number of software requirements in the SSDD that are documented in the IRS

" Preliminary Design
- Number of SRS and IRS requirements documented in the SDD
- Number of SRS and IRS requirements documented in the IDD

" Detailed Design
- Number of CSUs designed

" Code and Unit Test
- Number of CSUs coded
- Number of CSUs unit tested

38 CMU/SEI-92-TR-1 1

" Integration and Test

- Number of CSUs integrated
- Number of CSC integration tests completed

* Formal Test

- Number of requirements tested

- Number of tests completed

The number of work items (e.g., requirements documented or CSUs designed) that are
planned and reported must be sufficient to enable the program manager to determine
intermediate progress; i.e., the granularity of the work items must be small enough to provide
new data for each monthly report.

Tracking starts when an activity passes through its entry criteria. Tracking for each activity
can either end when the exit criteria for the activity are completed or continue past the exit
criteria as a measure of the rework for that activity [BOEHM87]. The plans should be
identified by revision number. Data from past plans should be shown on the development
progress measures.

3.5.4 Sample Indicat 3rs, Analyses, and Actions (Development Progress)

Early insight into deviations from planned progress is essential for early corrective action to
be taken. The program manager's biggest advantage in using the development progress
measures is that the true progress of work completed can be followed early in the
development process. Moreover, these measures require the contractor to use a detailed
level of planning to successfully use this measure.

A key to successfully applying this measure is having the entry and exit criteria properly
defined for each of the data items reported. For example, the exit criteria for a CSU design
to be counted as complete could be a successful design peer review and no open action
items or defects against the CSU; for the code of a CSU to be counted as complete, an error-
free compile and code inspection should be achieved; for the integration of a CSU to be
counted complete, the CSU integration test should be successfully completed and no open
defects should exist against the CSU. If an item's exit criteria have been met and it has been
counted as complete, any additional work toward that item can be counted as rework.

Measures for projects progressing well will show a steady, consistent growth of completions
as shown in Figure 3-10. Program managers can use a development progress measure
similar to Figure 3-10 to determine 1) if any deviations of actual progress from the planned
progress warrant corrective action; and 2) if the rate of progress is sufficient to meet the
planned major milestone dates (i.e., activity completions) and, eventually, the planned date
for product delivery.

CMU/SEI-92-TR-1 1 39

- Plan

~ Actual

30 0 - - --------------

a) Dsignd /Integrated

4) 2 00 - -----------------

E
0

015

C,, -Coded

Pla

..

2 5 0

Months

Figure 3-10 Sample Development Progress Measure

Development progress data can also be effectively displayed as shown in Figure 3-11. In
Figure 3-11, the number of OSUs that have completed key process steps are tracked. For
this measure to be effective, clearly defined exit criteria must be used to determine when a
CSU has passed through such a checkpoint.

40 CMU/SEI-92-TR-1 1

120 114 CSUs Planned

Design

80 Code

E I Inspection
Test

(/)

o
o 40 t

May 1 June 1

Figure 3-11 Example Showing CSUs That Have Completed Key Process Steps

Uses of the development progress measures include:

* Comparing it to the staff effort measures. Here the program manager compares the
total number of work items and the distribution of the work items to the effort
distribution to ensure that the distributions are proportional and represent the desired
work item granularity.

" Comparing it to the milestone performance measures. Here, the program manager
compares the progress shown for an activity in the development progress measures
to the progress shown in the milestone performance measures.

" Assessing whether the planned schedule completion date is achievable given the
deviation of the progress to date from the plan, i.e., the actual number of work items
completed compared to the number that was planned to be completed to achieve the
planned completion date. Two items that need to be analyzed to make such an
assessment are 1) current deviation between the actual progress and the plan and 2)
the rate of progress or slope of the curve for the actual completed work packages
from the beginning of work to the last report.

CMUISEI-92-TR-1 1 41

To assess whether the planned schedule completion date is achievable, the program
manager might want to:

* Ensure that the completion and exit criteria for milestones and work items are well-
defined and verifiable (e.g., for milestones, the review is complete and action items
are closed or the source code is submitted to configuration management for the code
and unit test activity). If they are not, then true progress may be disguised by having
work items reported as completed when work still remains.

" Take into account the quality of the completed work items, especially during the
requirements and design stages where problems will be less costly to correct
[BOEHM81]. If quality is questionable during the requirements and design activities,
then the program manager should consider missing some early milestones to ensure
a higher quality software product later. A rough judgment of the auality at these early
stages can be obtained by correlating development progress with the quality progress
measures.

* Make a gross schedule forecast from the development progress measure by taking
the ratio of the planned completed and the actual completed work items multiplied by
the total schedule duration. For example, suppose that 100 work items were planned
to be completed by a certain date, but only 90 were completed and that the schedule
duration for those 100 work items was 6 months. Those 90 items should have taken
5.4 months, thus the progress is at least 6/1 Oths of a month behind that which was
expected. That is.

if 100 work items = 6 months and 90 work items = x months then

100/6 = 90/x or x = (6*90)/100 = 5.4
Note, at least three reporting periods are probably needed before such a forecast is
useful. Also, such a forecast assumes that the work items being counted take
approximately the same amount of staff hours. If this is not the case, do not do this
type of forecast.

* Extrapolate the rate of progress (the slope of the actual completed work item curve
between the current report and the last report) to determine if the trend is converging
toward or diverging from the planned completed work item curve. If the actual curve
is significantly lower than the planned curve and the slope indicates further
divergence, this is usually cause for concem.

* Assess the deviation between the planned and actual progress profiles. If the
contractor is unable to report planned progress profiles soon after SDR, there may be
insufficient requirements analysis and decomposition. If the deviation between
planned and actual data is increasing, SSDD requirements may not be allocated to
CSCIs and these requirements may not be translated or refined to complete, testable,
and traceable SRS requirements.

* Track the number of tests successfully completed against scheduled tests as time
progresses. Deviations from planned test progress should decrease to zero toward
the end of the contract. If the deviation persists, or if there are repeat test failures,
more serious requirements, design, and implementation problems could be the

42 CMU/SEI-92-TR-1 I

cause. The quality progress measures should be evaluated to obtain insight into
these problems.

3.5.5 Other Measurements and Partitions (Development Progress)

The program manager may also want to consider the following development progress
measurements and partitions:

" Track by separate CSCIs or system/segment.

* Show multiple activities on the same graph (e.g., coding and integration testing).

" Show system test progress for critical software.
" Track by incremental release content (i.e., by build).

" Show verification status of requirements and design.

3.6 Software Defects

3.6.1 Purpose (Software Defects)

The software defect measures track the acceptability and problem content of the products. It
gives the program manager information on the readiness of the software to proceed to the
next phase. It also helps the program manager determine if the product is ready for review
or release and if it will be necessary to rework a product that has exhibited problems before
proceeding to the next activity. The program manager should make the collection of software
defects a constructive effort and encourage the early identification and correction of defects.

3.6.2 Description (Software Defects)

The program manager uses the software defect measures to track the defects resulting from
program activity. The program manager uses the information on defects to determine
whether to move intermediate products forward to the next development activity or to
continue the current activity and further mature the products. For example, if at PDR an
inordinate number of action items results from the requirements documentation, the program
manager may decide that the contractor needs to spend more time analyzing requirements,
updating the documentation, and closing the action items from the review. The program
manager may want to advise or redirect the contractor to re-do the requirements specification
before continuing on to the design activity.

Defects are anomalies noted during the development process. They are tracked via software
problem reports (SPRs). SPRs should be tracked for any product or work item that has

CMU/SEI-92-TR-1 1 43

passed through its exit criteria and was counted as completed by the development progress

measures. Defects can be:

• Errors detected during testing. For example, the work item would be the coding of a
unit whose exit criteria could be a successful compilation, unit test, and code
inspection.

• Government comments on documents. For example, ine work item could be the
document, or a section of the document if it is a major document, whose exit criterion
is its delivery.

" Action items from reviews. For example, the work item would be the product(s) being
reviewed whose exit criterion is the review. Action items can result from major
milestone reviews (e.g., PDR or CDR) or from internal or less formal reviews (e.g.,
inspections or peer reviews).

For program managers to measure the effort being consumed by rework, they need to
require contractors to track the effort expended correcting defects.

3.6.3 Data Inputs and Collection (Software Defects)

The data inputs the program manager collects or has reported for the software defects
measures are:

* Total number of defects opened and closed

• Number of defects opened and closed since the last report

Additionally, the data above should include the following information for each defect to allow
proper analysis:

" Type (e.g., testing error, action item, or document comment)

" Classification and priority3

" Product in which the defect was found

Different types of defects should be tracked separately so they are distinguishable from each
other (e.g., document comments and software testing errors should not be added together).

3 For determining the classification and priority of defects, refer to Appendix C of DOD-STD-2167A

[DOD2167A].

44 CMU/SEI-92-TR-1 1

3.6.4 Sample Indicators, Analyses, and Actions (Software Defects)

The software defect measures can be used to determine the effectiveness of the software
development process. For each product and type of defect, the program manager tracks:

" Reported defects

* Open defects: defects that have not been resolved

* Closed defects: defects that have been resolved and approved

From these, the program manager can determine the defect discovery rate and the current
known quality of the software products. The program manager can use a chart similar to
Figure 3-12 to make these determinations.

Total Reported

,xv , Total Closed

Total Open

0-,E.

Fimr 30 -12 Sampe-Sftwae-Dfect-Mesur

(D

0

M1 M2 M3 M4 M5 M6
Months

Figure 3-12 Sample Software Defects Measure

The number of defects reported can be used to determine the effort being consumed by
rework by including the number of hours to process and correct each defect. The rate of
closure and the trend of remaining unresolved defects can be used to measure the progress
of the rework. The defects can be grouped and the progress of resolving the group(s) of
defects can be tracked by the development progress measures.
The defect discovery rate can be tracked to determine the acceptability of products at a
particular stage of the development cycle. When analyzing the discovery rate, the program
manager needs to correlate the rate with the types of effort being applied to the contract. A
declining number of reported defects may be caused by the reallocation of effort from

CMU/SEI-92-TR-1 1 45

discovering defects to correcting defects (e.g., the testing effort is being applied to correction
activities and not to testing). A measure can be generated for other development resources
(e.g., the number of development computers) and correlated to the defect discovery rate.

The program manager can also analyze the slope of each curve. If the slope of the open
defect curve is positive, it could indicate that defects are being identified faster than they can
be resolved; if the slope is negative, then the defect detection and correction process may be
working or little effort is being expended to discover defects [BRETT], [MUSA].

Understanding both the data and what the data represents is clearly needed as shown in
Figure 3-13. In this figure, the total number of defects discovered are being tracked.
However, without knowing that the total includes the code related defects and non-code
related defects, the program manager could be led to believe that many more defects are
being discovered in the software than really exist. From such a figure, the program manager
can also get information on the rate of discovery of defects. By correlating the figure to other
measures such as the milestone performance and the effort measures, the program manager
can get indications of impacts on the schedule.

Note: Total = Code Related + Non-Code Related

75

Total Defects

a1) 50

0

E Code Related

z 2 5

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

Months

Figure 3-13 Example Illustrating the Need for Understanding Software Defects
Discovered

46 CMU/SEI-92-TR-11

Tracking the number of defects found during integration or acceptance testing can provide
data for reliability models as well as information on the rate at which defects are being
discovered during testing. By determining the software's defect density by normalizing the
number of defects found during testing to the size measurement (Figure 3-14), the program
manager also has an indication of testing adequacy and code quality.

a-- 30 ---0- .

0-0
0

m. 10-

(D2

M1 M2 M3 M4 M5 M6 M7

Months

Figure 3-14 Sample Defect Density Measure

Increases in reported defects are frequently observed after major reviews (i.e., action items)
and the start of testing activity (testing errors). If the increase is minor, it is necessary to
investigate whether the product is of high quality or whether the review was ineffective.

The program manager needs to be concerned about the length of time that known defects
remain open. The sooner defects can be detected, the lower the cost to correct them and
the lower their impact on the schedule [BOEHM81]. The program manager needs to ensure
that detected defects are corrected in a timely manner so that the risk impact is minimized.
Figure 3-15 is an example indicator report that program managers can use to track the
longevity of defect reports.

CMU/SEI-92-TR-1 1 47

Number of Problem Reports
2167A That Have Been Open x Days
Priority
Levels x<30 30<x<60 60<x<90 x>90 Totals

Priority 1 2 1 3

Priority 2 3 1 1 5

Priority 3 3 2 1 1 7

Priority 4 4 3 3 2 12

Priority 5 8 6 3 3 20

Totals 20 13 8 6 47

Figure 3-15 Example Table Showing Longevity of Defects

Analyzing the root causes of defects can motivate an improvement process to prevent the
introduction of errors [HUMPHREY89]. Analyzing the root causes of defects may also result
in higher quality end-product and less product rework in later releases of a multi-release
project.

The program manager can also use techniques such as Pareto analysis (as in Figure 3-16)
to help isolate modules that are the most prone to error [ISHIKAWA]. If certain modules have
more errors than others, those modules may be more complex, the functionality may not be
completely understood [BURR], or the modules may be very large compared to those with
few or no errors. The program manager could have the modules redeveloped (i.e.,
redesigned and recoded) or require more testing for the modules. For example, in Figure 3-
16, CSCs D and F are responsible for 80 percent of the errors found. In this case, the
program manager would have the contractor redesign those modules or apply more effort to
them during testing.

48 CMU/SEI-92-TR-1 1

42

, 38

3j

30,
GOs s

0 25-
Lu)s

• 20

15-e 15 - -I''

0 10
co) 10- -I

I5

5-
__- %• "0 0 0

D F A G J I B C E H

Computer Software Components (CSCs)

Figure 3-16 Example of Pareto Analysis Showing Defects Per CSC

3.6.5 Other Measurements and Partitions

Based on program issues, the program manager might also want to consider the following
software defect measurements and partitions:

" Priority, severity, or criticality of defect
* Software language
" Development process or activity that caused the defect
* Development process or activity that found the defect
" Contractor or subcontractor
" Effort expended to close defects (or categories of defects, e.g., effort expended to

close defects by various levels of defect severity)

CMU/SEI-92-TR-11 49

3.7 Computer Resource Utilization

3.7.1 Purpose (Computer Resource Utilization)

Computer resource utilization (CRU) measures give the program manager an indication of
the percentage of computer hardware resources used. The program manager is concerned
about the use of computer resources because the software must operate within tangible
hardware limits. 4 The program manager is also concerned that resources be available for
future expansion of software functionality or for needed increases in software performance.
The CRU measures track the use of a computer's processors, memory, mass storage
devices, and input/output channel throughput. CRU growth should be reviewed and
analyzed early in the program if spare capacities are of concern.

3.7.2 Description (Computer Resource Utilization)

The CRU measures track four categories of computer resources:

* Central processing unit (CPU) utilization: measures the percentage of available
processing power used during worst-case software execution.

* Memory utilization: measures the percentage of total available computer memory
process-resident software and data.

* I/O throughput: measures the speed and amount (number of bytes) of total
throughput capacity used during worst-case data transfers.

* Mass storage utilization: measures the percentage of total storage used at peak
residency.

The measures may be applied to development computer and target computer depending on
criticality.

The program manager determines how much spare capacity is needed by considering the
software's purpose and future. For example, if the software's purpose is an overnight
processing of database reports for an inventory management system, spare capacities may
be small because performance may not be an issue. In this case, expansion could be
achieved by adding another computer. However, if the software is for the flight control
system of a plane, the spare capacities may need to be large for increased performance or to
allow for future expansion of the software because another computer is not easily added.

4 In some systems, the program manager may choose not to use this indicator because it is not
important to the system. However, in mission critical computer resource (MCCR) applications, the
program manager should include it.

50 CMU/SEI-92-TR-1 1

3.7.3 Data Inputs and Collection (Computer Resource Utilization)

For the CRU measures, the program manager has the following data inputs reported via a
CDRL item:

" Total available capacity of each resource

" Current measurements

" Estimates projected to a designated milestone for each resource

Example of the units for each computer resource data input are:

* CPU throughput capacity: millions of instructions per second (MIPS)

* Memory: the kilobytes or megabytes for each type of memory (e.g., RAM or ROM)

* I/O throughput: bytes per second (BPS)

* Mass storage devices: kilobytes or megabytes for each device

The program manager determines the required spare capacities and has estimates made for
the use of the resources until actual data are available. Estimates should be replaced with
simulated results and actual data as they become available. Extremely important to the
program manager are the method of calculating the data and the assumptions us.ed to
develop resource loadings for the "worst-case scenario." The program manager needs to
ensure that the method used is valid and verifiable. Examples of methods include analysis
by comparison, simulation analysis, or demonstration of the possible scenarios of resource
use.

The earliest estimates of processor throughput availability should be carefully specified in
terms of instruction mix and other benchmark assumptions until these estimates can be
replaced by measurements.

Monthly tracking against plans should start at PDR and continue throughout the development
effort.

3.7A Sample Indicators, Analysis, and Actions (Computer Resource Utilization)

Early insight into the resource demands of the software will highlight any inadequacy of the
planned resources. Early CRU assessments are vital for long lead time procurements of
special purpose processors, memories, buses, and mass storage devices. This is
particularly important when there are physical or other constraints on the amount of
resources that can be provided. Excessive use of computer resources contributes to
increased schedule delay, increase of development cost, lowered reliability, potential loss of
system functionality, and expensive software or system redesign.

The program manager tracks the CRU measures using a graph similar to Figure 3-17. Spare
capacity levels for target CPU should be established to allow for software upgrades after the
software has been released. The program manager monitors the use of resources to verify
that spare capacities are sufficient. For systems where resources are critical, a spare

CMU/SEI-92-TR-1 1 51

capacity requirement lower than 50 percent must be carefully weighed in terms of cost,
feasibility, and operational suitability. If a spare capacity (i.e., reserve) lower than 50 percent
is established, there should be rigorous formal tracking and proactive risk management.
Sometimes system engineering tradeoffs do not permit reasonable spare capacity targets.
The program manager might then manage this risk formally by requiring quantitative
allocations of resource capacity to CSCIs, CSCs, and management of these allocated
resources.

When use of resources is near the specified upper bound for physically constrained
computer resources, this measure should be correlated with the schedule and development
progress measures to assess the potential impact of any necessary redesign.

Memory

CPU
eewv"w I/0 Throughput

100-1 Hard disk

00

260

00 40-
0

20

M1 M2 M3 M4 M5 M6 M7

Months

Figure 3-17 Sample Computer Resource Utilization Measure

The I/O resource is the hardest to measure fully because there may be many I/O
measurements to consider. These include disk channel capacities and rates for serial data,
parallel data, disk access, printers, plotters, local network data, I/O data bus, and special
peripheral data. The I/O resource to be tracked must be defined if it can adversely affect
system operation.

52 CMU/SEI-92-TR-1 I

When system utilities cannot provide the CPU processor time used during execution of
specific tasks, the program manager should consider the use of a "time bumer" stub during
design to simulate and estimate via a prototype the worst-case amount of time a subroutine
is expected to take to execute after it has been fully coded. During verification testing, such
a stub can be used as a test driver to set up a high priority task and increase appropriate
time delays while looking for system degradation effects.

When the estimated use of resources exceeds management criteria for spare capacities, the
following actions might be considered.

" Optimizing the software: the software and/or storage devices could be optimized
using commercially available utility software.

" Redesigning the software: time critical functions could be redesigned and recoded in
assembly language; time "hogging" functions could be redesigned for optimal
processing; and time consuming data transfers could be redesigned using double
buffering design techniques.

" Adding computer resources: if feasible, faster processors, more memory, larger disks,
etc. could replace slower or smaller devices.

" Accepting loss of mission or support functionality: if necessary, functionality may
need to be deferred to later releases or eliminated.

* Changing system requirements: as a last resort, the system requirements could be
revised and alternatives considered. The system may not be possible within certain
usage constraints.

Carefully defined and collected CRU data can provide a valuable historical basis for
improving the accuracy of future estimates of computer resources, the effectiveness of
methods for data collection and estimation, and the choices for management reaction criteria.

Other measurement correlations that the program manager can use include:
" Check data from the defect measures regarding defects related to resource

utilizations.
" Investigate rework to determine if resource utilization problems are causing

unplanned staff growth and excessive effort expenditures.
" Scrutinize size allocations to determine if size growth is, or will be, within hardware

resource limits.

* Probe schedule and progress reports to assure that resource utilization plans are not
impacting delivery dates and commitments.

CMU/SEI-92-TR-11 53

3.7.5 Other Measurements and Partitions (Computer Resource Utilization)

The program manager might also want to consider the following CRU measurements and
partitions:

" Absolute counts instead of percentages of CRU units to highlight changes in total
reallocated available resources.

* No-load and average-load in addition to worst-case assumptions for resource loading
scenarios to highlight the impact of different scenarios of resource loading.

" Separate reports on use of resources in a multi-resource architecture that has
dedicated functions to highlight the impact of different dedicated functions on CRU.

54 CMU/SEI-92-TR-1 1

4. Other Sample Analysis Techniques

A good software development process yields good quantitative data. Good quantitative data,
in turn, provides information that contributes to successful software program management.
Analyzing measurement data will provide the program manager insight into the software
development process throughout the development life cycle.

Based on the program manager's issues, indicators are derived from low-level measurement
data and analyzed to gain insights into the program. The program manager tracks the plans
and estimates against the actual data as it becomes available. The program manager then
extrapolates trends in the actual data to estimate future performance and progress and to
determine if the trends mitigate known risks or expose new ones. Several analysis
techniques can be used to maximize the insight achieved. The other techniques discussed
are:

" Trend analysis. For example, plot and analyze the number of CSUs completing unit
test.

" Multiple metric relationship analysis. For example, plot the current staffing plan
through completion and compare it to the scheduled tasking to assess whether the
planned staffing is realistic and adequate.

" Modeling input data analysis. For example, use a model such as the constructive
cost model (COCOMO) or other commercially available tools to generate estimates
and to extrapolate data to predict future performance.

" Thresholds and warning limits. For example, set thresholds around planning curves,
then analyze the variability of the actual data using the thresholds as warning signals
when the actual data approaches or crosses them.

4.1 Trend Analysis

Trend analysis is a basic technique for gaining insight into a program. Consider the example
trend graph shown in Figure 4-1 which illustrates the number of problem reports and
indicates their status. One purpose of this measure is to support the management and
assessment of cost and schedule risk (i.e., if a large number of unresolved problems is
allowed to accrue, cost and schedule overruns may result by the time the problem reports
are finally addressed).

CMU/SEI-92-TR-11 55

.....

4 0 0 •............ :........... : "......

3 5 0 :

3 0 0

/). 2 50

0r

0

E 200

= 150
CL

100

50

0 SSR PDR CDR

Time

Open-unresolved

IIIfIfIIIIIII Open-resolved

Closed

Figure 4-1 Example of Single Parameter Trend Analysis

Based on this graph, the program manager can assess whether problem report status poses
a cost or schedule risk to the program. An analysis of the graph shows a large number of
new problem reports around SSR, with successively smaller jumps around PDR and CDR. It
also shows that the resolution rate has nearly kept pace with the new problem report
identification rate. The one possible cause for concern is the closure rate, which shows that
half of the total problem reports remain open, and none have closed since PDR. In the
example, the failure to close problem reports should be investigated; however, given that
most of the open problem reports have been resolved, they do not appear to be a significant
cause of risk.

Trend analysis can also be used to compare plans with actual data. These analyses can
encompass data for plans, plan changes, actuals, actual changes, projections, and projection
changes. In addition to providing specific insight into the aspect of the program being
measured, planned versus actual measures provide an indication of the maturity and
reliability of the planning and estimating process.

Consider the CSU development progress measure shown in Figure 4-2. This measure
shows planned, replanned, and actual completion rates for design, code/unit test, and
integration of CSUs. The measure also shows rework. The primary uses of this measure

56 CMU/SEI-92-TR-1 1

are to assess the schedule risk and measure real technical progress. This graph shows that
there was one replan just prior to CDR, which appears to have been caused by a 10 percent
increase in the total CSUs defined. Actual design completion slipped another month beyond
the replan. CDR, coding, and integration all began as originally scheduled. The main
problem appears to be in integration progress, which is below the plan and progressing at a
declining rate. The level of redesign and recoding during integration also raises a warning
flag. Armed with this measure , the program manager can ask specific questions (such as
queries into the nature of the rework performed) to identify the source of the integration
problem.

Plan 1: 890 CSUs

Plan 0: 800 CSUs --Pln 1 -
800 - - - -

7:: 00 "; ' Cdad Plan:0 ' Ui Te. ". .
................................eta

7 0 0 ,,:.
Cbde and
Un it Test

...... . eta i

~4QQ . .Integration

Z 300...........

200 1

1 0 0

PDR CDR TRR

Contract MonthRework

Design
Code/Unit Test Plan

M Integration -.- ,. Actual

Figure 4-2 Example of Multiple Parameter Trend Analysis

CMU/SEI-92-TR-1 1 57

4.2 Multiple Metric Relationship Analysis

The program manager should correlate the trends from all of the measures before making
decisions based on them. Analysis of relationships between multiple measures is an
essential tool for correlating such trends and for obtaining and confirming program insights.
Often the benefit of analyzing the relationship between multiple measures is greater than the
sum of the individual benefits of the same measures. An example of this is shown in Figure
4-3, where the number of software development personnel overlays the schedule. Notice
that the design and implementation activities planned are highly parallel even as planned
staffing is decreasing. Assuming the budget is based on the planned staffing shown, this
program exhibits significant cost risk, since it is unrealistic to assume that the schedule can
be maintained with the planned decrease in staffing. Also, the program has been able to
stay on schedule by using more staff than planned, but just as schedule activities intensify,
the staffing levels are beginning to drop below the planned level. If each of these measures
were only considered independently, it is possible that the program manager would overlook
the apparent inconsistency in the plans.

As shown by the example, the technique is simple to use, yet very powerful and valuable as
a tool for assessing plans. Measures based on data from plans will generally exhibit one of
three relationships with each other:

* Positive trend relationships, where both measures are expected to track in a
consistent direction. Where the expected tracking does not occur, such as in the
example above, further investigation by the program manager is warranted.

* Inverse relationships, where there is an underlying tradeoff implicit in the things being
measured. A simple example is estimated cost and estimated SLOC. If the
developer determines that a portion of the originally planned level of reusable
software will have to be new SLOC, a negative cost impact would be expected.

" Independence, where there is no presumed relationship between the measures.

58 CMU/SEI-92-TR-1 1

Date of Data Collection

Requirements Analysis

Design

oi
Z 150
C
C RLACode

1 .0
1 0......,o......

O Test/Integ'ration
....

5 0 ::: .-..-" :

E
z

M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13
Contract Month Actual -

Plan

Figure 4-3 Example of Multi-Metric Relationship Analysis

CMU/SEI-92-TR-1 1 59

4.3 Modeling Input Data Analysis

Use of models fits naturally with software measurement. Models provide specialized
algorithms for predicting or estimating certain key characteristics of a software program. The
most common examples are cost models and reliability models. Often these models can use
the same data that is being collected for use in generating the other measures discussed
previously.

Models often use data from similar, past projects as bases for comparisons and to guide
decisions on the input data. Such historical data is critical in validating the model used. But
because no two programs are alike, care must be used to not overemphasize the model's
output. Because of the emphasis on understanding inputs to models, modeling becomes an
important analysis tool for understanding contractor estimates and forecasts.

Cost models typically provide predictions of cost and schedule based on a set of input
parameters, such as lines of code, labor rates, quality requirements, application
characteristics, environment characteristics, and demonstrated past performance. While the
actual value of certain input parameters (especially lines of code) is not available until late in
the program, early estimates of these parameters have been successfully used with many
cost models.

Reliability models typically estimate the number of operational failures that will occur per unit
of time. The primary drawback of the most common reliability models is the unavailability of
input parameter data (or reasonable estimates) until late in the development of a software
system. Most reliability models use test results (failure data during operational testing) as the
key input parameter. For this reason, the main benefit of reliability models occurs in the
testing stages and later during post deployment software support. A typical application of a
reliability model is as an aid in determining when testing can stop.

An example analysis using a cost model (in this case COCOMO) is shown in Figure 4-4.
This example shows the results of independent predictions of cost and schedule by the
software development contractor, the government, and an independent estimator. Given the
significant difference in the predicted cost and schedule, further investigation of the
underlying assumptions is warranted. Figure 4-5 shows a possible result of such an
investigation, based on the government versus contractor assumptions of the input
parameters driving the cost model. An item by item review with the contractor can be
conducted to understand and evaluate the rationale for the input values used.

60 CMU/SEI-92-TR-1 1

Estimates of Cost and Schedule by Various Sources

$35.6M

S36M

0 $42M

iiiiiiii~ii~iii~iiiiiiit i$4 1 M

48 months Legend
48 months

52 i Contractor Estimate
,iJ52 months

months Independent Estimate
60 months

Government Estimate
% -15% -10% +10% +15% +20%

Contract
Award

Figure 4-4 Example of Modeling Input Data Analysis Using COCOMO

COCOMO Model Analysis
Driver assumptions used by government and contractor for their estimate

Contr Gov't Contr Gov't Contr Gov't
ACAP HI NML RELY HI HI VIRT HI HI
AEXP NML NML DATA NML HI TURN NML HI
PCAP NML LO CPLX HI HI MODP HI NML
VEXP NML LO TIME NML NML TOOL LO LO
LEXP NML LO STOR NML NML SCED NML NML

Size = 200K 250K Mode = Semi Semi

Staff Months Cost (%M) Schedule (Months) Staff

Contr GoVt Contr Gov't Contr Gov't Contr Gov't
RP 4.8 233.3 .786 1.750 6.5 5.1 16.2 45.5
PD 201.0 298.1 1.507 2.236 8.2 7.4 24.6 40.3
DD 331.5 618.1 2.486 4.636 7.8 9.2 42.6 66.9
CT 466.1 1048.6 3.496 7.865 8.2 10.8 57.1 96.8
IT 498.9 1368.9 3.739 10.264 13.0 21.7 38.2 63.1

Tote! 1601.9 3566.8 12.015 26.750 43.6 54.3 36.7 65.7

Figure 4-5 Example of Modeling Input Data Analysis Results of Government
Versus Contractor Estimates

CMUJSEI-92-TR-1 1 61

4.4 Thresholds and Warning Limits

The program manager can also use an analysis method that is similar to statistical process
control to help analyze the variability of the data received based on preconceived ideas of
when an identified issue has become (or is about to become) a problem. The basic
technique uses an adaptation of statistical process control charts. However, the program
manger usually does not have a sample of data from which to apply statistical methods such
as control limits; instead, the program manager uses subjective thresholds of variability about
the plan data. That is, the program manager uses the plan data (or if plan data does not
exist, determines a goal, e.g., the number of software defects) and applies ranges of
variability whose boundaries are predetermined thresholds. These charts then allow the
program manger to see how the contractor is performing relative to the thresholds regarding
each issue.

Each measure would have an upper and lower threshold (UT and LT) and upper and lower
waming limits (UWL and LWL). The program manager would predetermine the threshold
limits and warning limits. These predeterminations could be dependent upon the priority of
the issue, the amount of risk that is associated with an issue, and the criticality or impact an
issue might have on the eventual outcome of the system (i.e., the potential loss). In Figure 4-
6, the UT and LT are set at plus and minus 20 percent of the plan data and the UWL and
LWL are set at plus and minus 10 percent. In practice, the thresholds and waming limits do
not have to be symmetrical, e.g., an upper limit could be plus 10 percent and a lower limit
could be minus 25 percent.

In Figure 4-6, productivity is plotted as staff hours per thousand function points as an
example of how to apply the technique. Whenever the actual data curve falls outside the
warning levels, the program manager should interpret it as a signal that potential problems
are starting to show up and further investigation is needed. Seemingly good trends, such as
the actual data curve being higher than the UWL, should also be investigated. The program
manager investigates trends by asking probing questions and analyzing the data and
contract information more closely.

62 CMU/SEI-92-TR-1 1

Productivity
(Staff Hours Per Thousand

Function Points)

UT (+20%)

UWL (+10%)

Planned o A

LWL (-10%)

LT (-20%)-Ip

Time

Figure 4-6 Example of Statistical Analysis Using Productivity

CMU/SEI-92-TR-11 63

64 CMUISEI-92-TR-1 1

References

[AFSC] Software Management Metrics, AFSC Pamphlet 800-43, August 31, 1990.

[BASILI] Basili, V. and H. D. Rombach, "The TAME Project: Towards Improvement-
Oriented Software Environment," IEEE Transactions on Software
Engineering, June 1988.

[BEAM] Beam, W. R., J. D. Palmer, and A. P. Sage, "Systems Engineering for
Software Productivity," IEEE Transactions on Systems, Man, and
Cybernetics, March/April 1987.

[BOEHM81] Boehm, B., Software Engineering Economics. Englewood Cliffs, New Jersey:
Prentice-Hall, 1981.

[BOEHM87] Boehm, B., "Understanding and Controlling Software Costs," IEEE
Transactions on Software Engineering, October 1988.

[BRETTJ Brettschneider, R., "Is Your Software Ready for Release," IEEE Software,
July 1989.

[BROOKS82] Brooks, F. P. Jr., The Mythical Man-Month: Essays on Software Engineering.
Reading, Massachusetts: Addison-Wesley Publishing Co., 1982.

[BROO:(S87] Brooks, F. P., "No Silver Bullet: Essence and Accidents on Software
Engineering," IEEE Computer, April 1987.

[BROWN] Brown, J. R. and M. Lipow, The Quantitative Measurement of Safety and
Reliability, TRW Report QR 1776, August 1973.

[BURFI Burr, T., "The Tools of Quality Part VI: Pareto Charts," Quality Progress,
November 1990.

[CONGRESS] "Bugs in the Program: Problems in Federal Government Computer Software
Development and Regulation," Staff Study by the Subcommittee on
Investigations and Oversight transmitted to the Committee on Science,
Space, and Technology - U.S. House of Representatives 101st Congress 1st
Session, September 1989.

[CORI- Con, K., "Fundamentals of Master Scheduling for the Project Manager,"
Project Management Journal, June 1985.

[DEMARCO] DeMarco, T., Ccatrolling Software Projects. New York: Yourdan Press, 1982.

[DOD2167A] Military Standard - Defense System Software Development, DOD-STD-
2167A, February 1988.

[DOD5000.1] Department of Defense Directive - Major Systems Acquisitions, DOD-DIR
5000.1, February 1991.

[HUMPHREY] Humphrey, W. S., Managing the Software Process. Reading, Massachusetts:
Addison-Wesley Publishing Co., 1989.

CMU/SEI-92-TR-1 1 65

[IEEE1045] Standard for Software Productivity Metrics, IEEE P1045/D4.0, December
1990.

[IFPUG] Function Points as Assets-Reporting to Management, The International
Function Point User Group, February 1991.

[ISHIKAWA] Ishikawa, K., Guide to Quality Control. Tokyo: Noridca International Limited,
1989.

[JURAN] The Juran Institute, "The Tools of Quality; Part V: Check Lists," Quality
Progress, October 1990.

[MUSA] Musa, J. D., A. lannino, and K. Okumoto, Software Reliability: Measurement,
Prediction, Application. New York: McGraw Hill, 1987.

[ONEILL] O'Neill, D. and C. Ingram, "Software Inspections Tutorial," SEI Technical
Review, 1988.

[PACKARD] Packard, D., Quest for Excellence, Final Report to the President, D. Packard
on behalf of the President's Blue Ribbon Commission on Defense
Management, Superintendent of Documents, GPO, Washington, D.C., 1986.

[SCHULTZ] Schultz, H., Software Management Metrics, ESD-TR-88-001, May 1988.

[SE189] Proceedings of the Workshop on Executive Software Issues August 2-3 and
November 18, 1988, SEI Technical Report, CMU/SEI-89-TR-6, ADA 206779,
January 1989.

[SHEWART] Shewart, W. A., Statistical Method From the Viewpoint of Quality Control, The
Graduate School - The Department of Agriculture, Washington D.C., 1939.

[USAF] Report of the DoD Joint Service Task Force on Software Problems, Lt. Col.
Larry E. Druffel, USAF - Task Force Chairman, July 1982.

[WALTON] Walton, M., The Deming Management Method. New York: The Putnam
Publishing Group, 1986.

66 CMU/SEI-92-TR-11

Acronyms

BPS Bytes Per Second

CDR Critical Design Review

CDRL Contract Data Requirements List

CM Configuration Management

COCOMO Constructive Cost Model

COTS Commercial Off the Shelf

CPU Central Processing Unit

CRU Computer Resource Utilization

CSC Computer Software Component

CSCI Computer Software Configuration Item

CSU Computer Software Unit

DoD Department of Defense

FCA Functional Configuration Audit

GFE Government Furnished Equipment

GFI Government Fumished Information

IDD Interface Design Document

IEEE Institute of Electrical and Electronics Engineers

I/O Input/Output

IRS Interface Requirements Specification

IV&V Independent Verification and Validation

KSLOC Thousands of Source Lines of Code

LT Lower Threshold

LWL Lower Warning Limit

MCCR Mission Critical Computer Resources

MIPS Millions of Instructions Per Second

CMU/SEI-92-TR-11 67

PCA Physical Configuration Audit

PDCA Plan-Do-Check-Act

PDR Preliminary Design Review

RAM Random Access Memory

ROM Read Only Memory

RFP Request For Proposal

SAMWG Software Acquisition Metrics Working Group

SDD Software Design Document

SDP Software Development Plan

SDR System Design Review

SEI Software Engineering Institute

SLOC Source Lines of Code

SPR Software Problem Report

SQA Software Quality Assurance

SRS Software Requirements Specification

SSR Software Specification Review

SSDD System/Segment Design Document

SSS System/Segment Specification

TR Technical Report

TRR Test Readiness Review

USAF United States Air Force

UT Upper Threshold

UWL Upper Warning Limit

WBS Work Breakdown Structure

66 CMU/SEI-92-TR-1 1

UNLDI&TrI. UNCLASSIFIED
uitYrry O.A SSFIIOC n OFUTHS PM

REPORT DOCUMENTATION PAGE
Ia. REORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABIUTrY OF REPORT
N/A Approved for Public Release
21% DEC.ASSFICONDOWNGRADING SCHEDULE Distribution Unlimited
N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S 5. MONITORING ORGANIZATION REPORT NUvMBER(S)

CMU/SEI-92-TR-11 ESD-TR-92-11

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Software Engineering Institute (il'applicable) SEI Joint Program Office
SEI

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University ESD/AVS
Pittsburgh PA 15213 Hanscom Air Force Base, MA 01731

Sa. NAME OFFUNDNGISPONSORING r Sb OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANZAION (if applicable) F1962890C0003

SEI Joint Program Office ESD/AVS

le. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.

Camegie Mellon University PROGRAM PROJECT TASK WORK UNIT
Pittsburgh PA 15213 ELEMENT NO NO. NO NO.

63756E N/A N/A N/A
1 I TITLE (Include Security Classification)

Software Measurement Concepts for Acquisition Program Managers
17 PERSONAL AUTHOR(S)
Jim 9ozum and Software Acquisition Metrics Working Group
13&. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr, Mo., Day) 15. PAGE COUNT

Final IFROM TOMay 1992 70 pp.
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 1. SUBJECT TERMS (Continue on rever e of neo aury and identify by block number)

FIELD GROUP SU. Gk management metrics software measurement process

metrics software metrics
software measurement

19. ABSTRACT (Continue on rvea if necessary and identify by block number)

For program managers to effectively manage and control software development, they need to incorporate a
measurement process into their decision making and reporting process. Measurement costs money, but it can
also save money through early problem detection and objective clarification of critical software development
issues. This report provides some basic concepts that program managers can use to help integrate measure-
ment into the process for managing software development. It also provides an initial set of measures to help
address common issues in software intensive acquisitions.

When the Software Acquisition Metrics Working Group first met in 1989, only a few reports existed on the sub-
ject of how program managers could use software measurement; now, other reports have been written. The
goal of this report is not to compete with those reports, but to use them as starting points for expansion. This

(please turn over)

20. DISTRIBUTION/AVAILABILTTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIF[ED'UNLIMrrED SAME AS RPTDTIC USERS Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL 22. TELEPHONE NUMBER (Include Aea Code) 22c. OFFICE SYMBOL

John S. Herman, Capt, USAF (412) 268-7631 ESD/AVS (SEI)

DD FORM 1473.83 APR EDITION of I JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSFICATION OF TMIS

M cr -- w him par O. bigOc 19

report should be viewed not as a standard, but as containing guidelines and advice for program officers and
managers starting to use software measurement in their own organizations.

